Skip to main content
Log in

Thermal and mechanical behavior of biodegradable polyester films containing cellulose nanofibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Agricultural waste is a valuable source of advanced materials. Cheap nanocellulose may be obtained from plum shells agricultural residues and further used instead of expensive nanocellulose as reinforcement in biopolymers. In this work, two types of nanocellulose, cellulose nanocrystals (CN) and cellulose nanofibers (CF), were isolated from plum seed shells using two different approaches. CN and CF from plum seed shells were used for the first time as reinforcing agents in a polylactic acid/poly(3-hydroxybutyrate) (PLA/PHB) matrix using a solvent casting method. The surface morphology, thermal (TG and DSC), static and dynamic mechanical (DMA) properties of the resulted biocomposite films were characterized and compared to the neat matrix. Atomic force microscopy—peak force quantitative nanomechanical mapping emphasized the influence of nanocellulose type upon the crystalline structure of PLA/PHB biocomposites and the dispersion of nanofibers/nanocrystals in the polymer matrix. Thermal and XRD analyses showed that the incorporation of CN increased the thermal stability and crystallinity of PLA/PHB biocomposite film. Young’s modulus and storage modulus of PLA/PHB/CN biocomposite were higher compared to that of PLA/PHB/CF showing the better reinforcing capability of CN compared to CF. This is consistent with the better dispersion of CN observed by PF QNM. The good effect of cellulose nanocrystals obtained from plum seed shells on the properties of PLA/PHB matrix highlights the potential of this cheap nanocellulose to obtain biocomposites in very advantageous conditions. This approach is proposed as an affordable and efficient tool to employ agricultural wastes as raw materials for high added-value products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J. 2018;108:274–85.

    Article  CAS  Google Scholar 

  2. Youssef AM, El-Sayed SM. Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym. 2018;193:19–27.

    Article  CAS  Google Scholar 

  3. Immonen K, Lahtinen P, Pere J. Effects of surfactants on the preparation of nanocellulose–PLA composite. Bioengineering. 2017. https://doi.org/10.3390/bioengineering4040091.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sharib M, Kumar R, Kumar DK. Polylactic acid incorporated polyfurfuryl alcohol bioplastics: thermal, mechanical and curing studies. J Therm Anal Calorim. 2018;132:1593–600.

    Article  CAS  Google Scholar 

  5. Ozmen U, Baba BO. Thermal characterization of chicken feather/PLA biocomposites. J Therm Anal Calorim. 2017;129:347–55.

    Article  CAS  Google Scholar 

  6. Hong SG, Huang SC. Effect of modified silica on the crystallization and degradation of poly(3-hydroxybutyrate). J Therm Anal Calorim. 2015;119:1693–702.

    Article  CAS  Google Scholar 

  7. Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.

    Article  CAS  Google Scholar 

  8. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM. Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym. 2014;107:16–24.

    Article  CAS  Google Scholar 

  9. Garcia-Garcia D, Garcia-Sanoguera D, Fombuena V, Lopez-Martinez J, Balart R. Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Appl Clay Sci. 2018;162:487–98.

    Article  CAS  Google Scholar 

  10. Ublekov F, Budurova D, Staneva M, Natova M, Penchev H. Self-supporting electrospun PHB and PHBV/organoclay nanocomposite fibrous scaffolds. Mater Lett. 2018;218:353–6.

    Article  CAS  Google Scholar 

  11. Swaroop C, Shukla M. Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol. 2018;113:729–36.

    Article  CAS  Google Scholar 

  12. Sullivan EM, Karimineghlani P, Naraghi M, Gerhardt RA, Kalaitzidou K. The effect of nanofiller geometry and compounding method on polylactic acid nanocomposite films. Eur Polym J. 2016;77:31–42.

    Article  CAS  Google Scholar 

  13. Fortunati E, Yang W, Luzi F, Kenny J, Torre L, Puglia D. Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. Eur Polym J. 2016;80:295–316.

    Article  CAS  Google Scholar 

  14. Arrieta MP, López J, López D, Kenny JM, Peponi L. Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod. 2016;93:290–301.

    Article  CAS  Google Scholar 

  15. Kiziltas A, Nazari B, Erbas Kiziltas E, Gardner DJ, Han Y, Rushing TS. Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydr Polym. 2016;140:393–9.

    Article  CAS  Google Scholar 

  16. Ketabchi MR, Khalid M, Ratnam CT, Walwekar R. Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre. Mater Res Express. 2016;3:125301.

    Article  CAS  Google Scholar 

  17. Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM. PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab. 2014;107:139–49.

    Article  CAS  Google Scholar 

  18. Moriana R, Vilaplana F, Ek M. Cellulose nanocrystals from forest residues as reinforcing agent for composites: a study from macro- to nano-dimensions. Carbohydr Polym. 2016;139:139–49.

    Article  CAS  Google Scholar 

  19. Franciele MP, Andrade-Mahecha MM, Amaral Sobral PJ, Menegalli FC. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci. 2017;505:154–67.

    Article  CAS  Google Scholar 

  20. Pirayesh H, Khazaeian A. Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B. 2012;43:1475–9.

    Article  CAS  Google Scholar 

  21. Urruzola I, Robles E, Serrano L, Labidi J. Nanopaper from almond (Prunus dulcis) shell. Cellulose. 2014;21:1619–29.

    Article  CAS  Google Scholar 

  22. Duran N, Lemes AP, Duran M, Freer J, Baeza J. A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc. 2011;56:672–7.

    Article  CAS  Google Scholar 

  23. Ping L, Hsieh YL. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym. 2012;87:2546–53.

    Article  CAS  Google Scholar 

  24. Canam T, Park JY, Yu K, Campbell M, Ellis D, Mansfield S. Varied growth, biomass and cellulose content in tobacco expressing yeast-derived invertases. Planta. 2006;224:1315–27.

    Article  CAS  Google Scholar 

  25. Frone AN, Chiulan I, Panaitescu DM, Nicolae CA, Ghiurea M, Galan A-M. Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett. 2017;194:160–3.

    Article  CAS  Google Scholar 

  26. Kürschner K, Hoffer A. Ein neues Verfahren zur Bestimmung der Cellulose in Hölzern und Zellstoffen. Techn. Chem. Papier und Zellstoff. Fabr. 1929;26:125–129 in Kacik Fr and Solar R. 1999. Analyticka Chemia Dreva (Analytical Chemistry of Wood). Technicka univerzita vo Zvolene. ISBN 80-228-0882-0.

  27. Acid-insoluble lignin in wood and pulp (reaffirmation of TAPPI Test Method T 222 om-02). http://www.tappi.org/content/SARG/T222.pdf.

  28. Wise LE, Murphy M, D’Addieco AA. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 1946;122:35–43.

    CAS  Google Scholar 

  29. Arrieta MP, López J, Hernández A, Rayón E. Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Eur Polym J. 2014;50:255–70.

    Article  CAS  Google Scholar 

  30. Battegazzore D, Frache A, Abt T, Maspoch ML. Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites. Composites Part B. 2018;148:188–97.

    Article  CAS  Google Scholar 

  31. Dasan YK, Bhat AH, Faiz A. Polymer blend of PLA/PHBV based bionanocomposites reinforcedwith nanocrystalline cellulose for potential application as packaging material. Carbohydr Polym. 2017;157:1323–32.

    Article  CAS  Google Scholar 

  32. Reddy JP, Rhim JW. Isolation and characterization of cellulose nanocrystals from garlic skin. Mater Lett. 2014;129:20–3.

    Article  CAS  Google Scholar 

  33. El Achaby M, El Miri N, Hannache H, Gmouh S, Youcef HB, Aboulkas A. Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int J Biol Macromol. 2018;117:592–600.

    Article  CAS  Google Scholar 

  34. Anbukarasu P, Sauvageau D, Elias A. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep. 2015;5:17884.

    Article  CAS  Google Scholar 

  35. Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Stanescu PO, Draghici C, Iorga M, Mihailescu M. Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. J Appl Polym Sci. 2017. https://doi.org/10.1002/app.44810.

    Article  Google Scholar 

  36. Arrieta MP, Castro-López MM, Rayón E, Barral-Losada LF, López-Vilariño JM, López J, González-Rodríguez MV. Plasticized poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem. 2014;62:10170–80. https://doi.org/10.1021/jf5029812.

    Article  PubMed  CAS  Google Scholar 

  37. Malmir S, Montero B, Rico M, Barral L, Bouza R. Morphology, thermal and barrier properties of biodegradable films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Composites Part A. 2017;93:41–8.

    Article  CAS  Google Scholar 

  38. Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab. 2012;97:1822–8.

    Article  CAS  Google Scholar 

  39. Bragg WH, Bragg WL. The reflexion of X-rays by crystals. Proc R Soc Lond Ser A. 1913;88:428–38.

    Article  CAS  Google Scholar 

  40. Frone AN, Panaitescu DM, Chiulan I, Nicolae CA, Vuluga Z, Vitelaru C, Damian CM. The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. J Mater Sci. 2016;51:9771–91.

    Article  CAS  Google Scholar 

  41. Panaitescu DM, Casarica A, Stanescu PO, Iorga MD, Purcar V, Florea D, Radovici C, Frone AN. Comparative analysis of bacterial and microcrystalline celluloses as reinforcements for poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Mater Plast. 2013;50:236–40.

    CAS  Google Scholar 

  42. Khakalo A, Filpponen I, Rojas OJ. Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactide: enhanced toughness towards material development. Compos Sci Technol. 2018;160:145–51.

    Article  CAS  Google Scholar 

  43. Hassaini L, Kaci M, Touati N, Pillin I, Kervoelen A, Bruzaud S. Valorization of olive husk flour as a filler for biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate): effects of silane treatment. Polym Test. 2017;59:430–40.

    Article  CAS  Google Scholar 

  44. Negawoa TA, Polata Y, Buyuknalcacia FN, Kilica A, Sabae N, Jawaide M, Tolera A. Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester. Compos Struct. 2019;207:589–97.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by two grants of Ministry of Research and Innovation, CNCS—UEFISCDI, PN-III-P1-1.1-TE-2016-2164, No. 94/2018, Biocompatible multilayer polymer membranes with tuned mechanical and antiadherent properties (BIOMULTIPOL) and PN-III-P4-ID-PCE-2016-0431, No. 148/2017, Nanocellulose 3D structures for regenerative medicine (CELL-3D) within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Nicoleta Frone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frone, A.N., Panaitescu, D.M., Chiulan, I. et al. Thermal and mechanical behavior of biodegradable polyester films containing cellulose nanofibers. J Therm Anal Calorim 138, 2387–2398 (2019). https://doi.org/10.1007/s10973-019-08218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08218-4

Keywords

Navigation