Skip to main content
Log in

Influence of wheat stalk nanocellulose on structural, mechanical, thermal, surface and degradation properties of composites with poly(butylene adipate-co-terephthalate)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Structural, mechanical, thermal and surface properties comprising biodegradable aromatic–aliphatic polymer poly(butylene adipate-co-terephthalate) (PBAT) and the wheat stalk-based nanocellulose (NCC) were studied. The materials were found to comprise the compatible and yet phase-segregated constituents which kept their identity in the nanocomposite materials. The NCC phase was found to be homogeneously dispersed in the PBAT matrix inside. Similar to the corresponding microcomposites, the investigated nanocomposites were found to be stable within their desired application temperature as packaging materials. The tensile properties of the nanocomposites degraded in terms of strain at break, tensile strength and tensile modulus. At higher filler content, the reinforcing effect dominated leading to an increase in indentation modulus and hardness, and a decrease in the work of elastic deformation. The wettability and the water absorption capacity of the materials increased with NCC content thereby enhancing the biodegradability of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ferreira DP, Cruz J, Fangueiro P (2019) Surface modification of natural fibers in polymer composites. In: Koronis G, Silva A (eds) Green composites for automotive applications, woodhead publishing series in composites science and engineering, chapter 1. Elsevier, Cambridge, pp 3–41. https://doi.org/10.1016/B978-0-08-102177-4.00001-X

    Chapter  Google Scholar 

  2. Ngo TD (2018) Natural fibers of sustainable bio composites. In: Günay E (ed) Natural and artificial fiber reinforced composites as renewable resources, chapter 7. InTechOpen, London, pp 107–126. https://doi.org/10.5772/intechopen.71012

    Chapter  Google Scholar 

  3. Chandramohan D, Marimuthu K (2011) A review on natural fibers. IJRRAS 8:194–206

    Google Scholar 

  4. He Z, Li G, Chen J, Huang Y, An T, Zhang C (2015) Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environ Int 77:85–94. https://doi.org/10.1016/j.envint.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Verma R, Vinoda KS, Papireddy M, Gowda ANS (2016) Toxic pollutants from plastic waste—a review. Proc Environ Sci 35:701–708. https://doi.org/10.1016/j.proenv.2016.07.069

    Article  CAS  Google Scholar 

  6. Kalita NK, Damare NA, Hazarika D, Bhagabati P, Kalamdhad A, Katiyar V (2021) Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator. Environ Chall 3:100067. https://doi.org/10.1016/j.envc.2021.100067

    Article  CAS  Google Scholar 

  7. Hazarika D, Kalita NK, Kumar A, Katiyar V (2020) Functionalized poly(lactic acid)-based nano-fabric for anti-viral applications. RSC Adv 11:32884–32897. https://doi.org/10.1039/D1RA05352C

    Article  Google Scholar 

  8. Ju J, Gu Z, Liu X, Zhang S, Peng X, Kuang T (2019) Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int J Biolog Macromol 147:1164–1173. https://doi.org/10.1016/j.ijbiomac.2019.10.085

    Article  CAS  Google Scholar 

  9. Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365. https://doi.org/10.1016/j.eurpolymj.2017.10.026

    Article  CAS  Google Scholar 

  10. Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC (2012) PBAT-based nanocomposites for medical and industrial applications. Mater Sci Eng C 32:1331–1351. https://doi.org/10.1016/j.msec.2012.04.005

    Article  CAS  Google Scholar 

  11. Spearman SS, Irin F, Ramesh S, Rivero IV, Green MJ, Harrysson OLA (2019) Effect of pseudomonas lipase enzyme on the degradation of polycaprolactone/polycaprolactone–polyglycolide fiber-blended nanocomposites. Int J Polym Mater Polym Biomater 68:360–367. https://doi.org/10.1080/00914037.2018.1445633

    Article  CAS  Google Scholar 

  12. Mahmood R, Abdalgane HA, Al-Jadiri RS (2020) Use of simulation to enhance the performance of sustainable bio-based polyurethan fome. Defect Diffus Forum 398:60–66. https://doi.org/10.4028/www.scientific.net/ddf.398.60

    Article  Google Scholar 

  13. Hasan M, Lai TK, Gopakumar DA, Jawaid M, Owolabi FAT, Mistar EM, Alfatah T, Noriman NZ, Haafiz MKM, Abdul KHPS (2019) Micro crystalline bamboo cellulose-based seaweed biodegradable composite films for sustainable packaging material. J Polym Environ 27:1602–1612. https://doi.org/10.1007/s10924-019-01457-4

    Article  CAS  Google Scholar 

  14. Giri J, Lach R, Grellmann W, Susan MABH, Saiter JM, Henning S, Katiyar V, Adhikari R (2019) Compostable composites of wheat stalk microcrystalline cellulose and poly(butylene adipate-co-terephthalate): surface properties and degradation behaviour. J Appl Polym Sci 136:48149. https://doi.org/10.1002/app.48149

    Article  CAS  Google Scholar 

  15. Giri J, Adhikari R (2020) Biodegradable copolyester-based natural fibers–polymer composites: morphological, mechanical, and degradation behavior. In: Katiyar V, Kumar A, Mulchandani N (eds) Advances in sustainable polymers, materials horizons: from nature to nanomaterials. Springer, Singapore, pp 289–319. https://doi.org/10.1007/978-981-15-1251-3_13

    Chapter  Google Scholar 

  16. Pokhrel S, Lach R, Le HH, Wutzler A, Grellmann W, Radusch HJ, Dhakal Rabindra P, Esposito A, Henning S, Yadav PN, Saiter JM, Heinrich G, Adhikari R (2016) Fabrication and characterization of completely biodegradable copolyester–chitosan blends: I. Spectroscopic and thermal characterization. Macromol Symp 366:23–34. https://doi.org/10.1002/masy.201650043

    Article  CAS  Google Scholar 

  17. Xiuling X, Xuesi C, Aixue L, Zhongkui H, Xiabin J (2007) Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. Eur Polym J 43:3187–3196. https://doi.org/10.1016/j.eurpolymj.2007.05.024

    Article  CAS  Google Scholar 

  18. Ma X, Cheng Y, Qin X, Guo T, Deng J, Liu X (2017) Hydrophilic modification of cellulose nanocrystals improves the physicochemical properties of cassava starch-based nanocomposite films. LWT Food Sci Technol 76:318–326. https://doi.org/10.1016/j.lwt.2017.08.012

    Article  CAS  Google Scholar 

  19. Igor T, Natalia R, Nabanita S, Petr S (2004) Study on biodegradability of protein-filled polymer composites using dielectric measurements. J Polym Degrad 86:411–417. https://doi.org/10.1016/j.polymdegradstab.2004.05.012

    Article  CAS  Google Scholar 

  20. Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu XY, Guo W (2019) A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15:1805084. https://doi.org/10.1002/smll.201805084

    Article  CAS  Google Scholar 

  21. El-Fattah AA, El-Demerdash AGM, Alim-Sadik WA, Bedir A (2015) The effect of sugarcane bagasse fiber on the properties of recycled high-density polyethylene. J Compos Mater 49:3251–3262. https://doi.org/10.1177/0021998314561484

    Article  Google Scholar 

  22. Candido RG, Gonçalves AR (2016) Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw. Carbohydr Polym 152:679–686. https://doi.org/10.1016/j.carbpol.2016.07.071

    Article  CAS  PubMed  Google Scholar 

  23. Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf-reinforced epoxy composites. Constr Build Mater 123:15–26. https://doi.org/10.1016/j.conbuildmat.2016.06.131

    Article  CAS  Google Scholar 

  24. Asim M, Jawaid M, Abdan K, Ishak M (2018) The effect of silane-treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler–phenolic composites. J Polym Environ 26:1520–1527. https://doi.org/10.1007/s10924-017-1060-z

    Article  CAS  Google Scholar 

  25. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber–polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  CAS  Google Scholar 

  26. Muhammad Ali NIB (2017) Preparation and characterization of banana trunk-derived nanocellulose prepared by acid hydrolysis. Bachelor thesis, Universiti Teknikal Malaysia Melaka

  27. Pelissari FM, do AmaralSobral PJ, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21:417–432. https://doi.org/10.1007/s10570-013-0138-6

    Article  CAS  Google Scholar 

  28. Arjmandi R, Hassan A, Majeed K, Zakaria Z (2015) Rice husk-filled polymer composites. Int J Polym Sci 2015:501471. https://doi.org/10.1155/2015/501471

    Article  CAS  Google Scholar 

  29. Cheng TS, Uy-Lan DN, Phillips S, Tran LQN (2018) Characteristics of oil palm empty fruit bunch fiber and mechanical properties of its unidirectional composites. Polym Compos 40:1158–1164. https://doi.org/10.1002/pc.24824

    Article  CAS  Google Scholar 

  30. Ramli R, Junadi N, Beg MDH, Yunus RM (2015) Microcrystalline cellulose (MCC) from oil palm empty fruit bunch (EFB) fiber via simultaneous ultrasonic and alkali treatment. World Acad Sci Eng Technol Int J Chem Nucl Mater Metall Eng 9:8–11

    Google Scholar 

  31. Senthamaraikannan P, Saravanakumar SS, Sanjay MR, Jawaid M, Siengchin S (2019) Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement. Mater Lett 240:22–224. https://doi.org/10.1016/j.matlet.2019.01.024

    Article  CAS  Google Scholar 

  32. Giri J, Adhikari R (2013) A brief review on extraction of nanocellulose and its application. BIBECHANA 9:81–87. https://doi.org/10.3126/bibechana.v9i0.7179

    Article  Google Scholar 

  33. Mariano M, El KN, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52:791–806. https://doi.org/10.1002/polb.23490

    Article  CAS  Google Scholar 

  34. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  35. Baghban MH, Mahjoub R (2020) Natural kenaf fiber and LC3 binder for sustainable fiber-reinforced cementitious composite: a review. Appl Sci 10:357. https://doi.org/10.3390/app10010357

    Article  CAS  Google Scholar 

  36. Tavares TD, Antunes JC, Ferreira F, Felgueira HP (2020) Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications. Biomolecules 10:148. https://doi.org/10.3390/biom10010148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaboorani A, Riedl B, Blanchet P, Fellin M, Hosseinaei O, Wang S (2012) Nanocrystalline cellulose (NCC): a renewable nano-material for polyvinyl acetate (PVA) adhesive. Eur Polym J 48:1829–1837. https://doi.org/10.1016/j.eurpolymj.2012.08.008

    Article  CAS  Google Scholar 

  38. Yousefian H, Rodrigue D (2014) Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of nylon 6 composites. Polym Compos 37:1473–1479. https://doi.org/10.1002/pc.23316

    Article  CAS  Google Scholar 

  39. Mukherjee T, Tobin MJ, Puskar L, Sani MA, Kao N, Gupta RK, Pannirselvam M, Quazi N, Bhattacharya S (2017) Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 24:1717–1729. https://doi.org/10.1007/s10570-017-1217-x

    Article  CAS  Google Scholar 

  40. Giri J, Lach R, Sapkota J, Susan MABH, Saiter JM, Henning S, Katiyar V, Adhikari R (2018) Structural and thermal characterization of different types of cellulosic fibers. BIBECHANA 16:177–186. https://doi.org/10.3126/bibechana.v16i0.21650

    Article  Google Scholar 

  41. Giri J, Lach R, Le HH, Grellmann W, Saiter JM, Henning S, Radusch HJ, Adhikari R (2021) Structural, thermal and mechanical properties of composites of poly(butylene adipate-co-terephthalate) with wheat straw microcrystalline cellulose. Polym Bull 78:4779–4795. https://doi.org/10.1007/s00289-020-03339-5

    Article  CAS  Google Scholar 

  42. Cherian BM, Leao AL, de Souza SF, Coata LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790–1798. https://doi.org/10.1016/j.carbpol.2011.07.009

    Article  CAS  Google Scholar 

  43. Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8:1893–1908

    Article  Google Scholar 

  44. Rajan KP, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2009) Mechanical and thermal properties of bamboo microfibril-reinforced polyhydroxybutyrate biocomposites. J Polym Environ 17:109–114. https://doi.org/10.1007/s10924-009-0127-x

    Article  CAS  Google Scholar 

  45. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WMZW, Rahman MZAB (2012) Effect of fiber esterification on fundamental properties of oil palm empty fruit bunch fiber/poly(butylenes adipate-co-terephthalate) biocomposites. Int J Mol Sci 13:1327–1346. https://doi.org/10.3390/ijms13021327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WMZBW, Rahman MZA (2012) Enhancement of mechanical and thermal properties of oil palm empty bunch fiber–poly(butylenes adipate-co-terephthalate) biocomposites by matrix esterification using succinic anhydride. Molecules 17:1969–1991. https://doi.org/10.3390/molecules17021969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lach R, Michler GH, Grellmann W (2010) Microstructure and indentation behaviour of polyhedral oligomeric silsesquioxanes-modified thermoplastic polyurethane nanocomposites. Macromol Mater Eng 295:484–491. https://doi.org/10.1002/mame.200900393

    Article  CAS  Google Scholar 

  48. Pal AK, Katiyar V (2016) Thermal degradation behaviour of nanoamphiphilic chitosan-dispersed poly (lactic acid) bionanocomposite. Int J Biol Macromol 95:1267–1279. https://doi.org/10.1016/j.ijbiomac.2016.11.024

    Article  CAS  PubMed  Google Scholar 

  49. Kijchavengkul T, Auras R, Rubino M, Selke S (2010) Biodegradation and hydrolysis rate of aliphatic–aromatic polyester. Polym Degrad Stab 95:2641–2647. https://doi.org/10.1016/j.polymdegradstab.2010.07.018

    Article  CAS  Google Scholar 

  50. Pokhrel S (2016) Chitosan based polymer blends: preparation, mechanical properties and biodegradability. Ph.D. thesis, Tribhuvan University: Kathmandu

  51. Mostafa HM, Sourell H, Blockisch FJ (2010) The mechanical properties of some bioplastics under different soil type for use as a biodegradable drip tubes. Agric Eng Int 12:12–21

    Google Scholar 

  52. Su SK, Wu CS (2011) Polyester biocomposites from recycled natural fibers: characterization and biodegradability. J Appl Polym Sci 119:1211–1219. https://doi.org/10.1002/app.32808

    Article  CAS  Google Scholar 

  53. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. eXPRESS Polym Lett 6:794–804. https://doi.org/10.3144/expresspolymlett.2012.85

    Article  CAS  Google Scholar 

  54. Cui S, Li L, Wang Q (2018) Fabrication of (PPC/NCC)/PVA composites with inner–outer double constrained structure and improved glass transition temperature. Carbohydr Polym 191:35–43. https://doi.org/10.1016/j.carbpol.2018.02.070

    Article  CAS  PubMed  Google Scholar 

  55. Yang J, Ye DY (2012) Liquid crystal of nanocellulose whiskers grafted with acrylamide. Chin Chem Lett 23:367–370. https://doi.org/10.1016/j.cclet.2011.12.014

    Article  CAS  Google Scholar 

  56. Pereda M, Amica G, Racz I, Marcovich NE (2011) Structure and properties of nanocellulose films based on sodium caseinate and nanocellulose fibers. J Food Eng 3:76–83. https://doi.org/10.1016/j.jfoodeng.2010.10.001

    Article  CAS  Google Scholar 

  57. Anirudhan TS, Rejeena SR (2013) Selective adsorption of hemoglobin using polymer-grafted magnetite–nanocellulose composite. Carbohydr Polym 93:518–527. https://doi.org/10.1016/j.carbpol.2012.11.104

    Article  CAS  PubMed  Google Scholar 

  58. Tuerxun D, Pulingam T, Nordin NI, Chen YW, Bin Kamaldin J, Julkapli NBM, Lee HV, Leo BF, Bin Johan MR (2019) Synthesis, characterization and cytotoxicity studies of nanocrystalline cellulose from the production waste of rubber–wood and kenaf–bast fibers. Eur Polym J 116:352–360. https://doi.org/10.1016/j.eurpolymj.2019.04.021

    Article  CAS  Google Scholar 

  59. Ma H, Zho B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84:383–389. https://doi.org/10.1016/j.carbpol.2010.11.050

    Article  CAS  Google Scholar 

  60. Khan RA, Beck S, Dussault D, Salmieri S, Bouchard J, Lacroix M (2013) Mechanical and barrier properties of nanocrystalline cellulose-reinforced poly(caprolactone) composites: effect of gamma radiation. J Appl Polym Sci 129:3038–3046. https://doi.org/10.1002/app.38896

    Article  CAS  Google Scholar 

  61. Yan M, Li S, Zhang M, Li C, Dong F, Li W (2013) Characterization of surface-acetylated nanocrystalline cellulose by single-step method. BioResources 8:6330–6341

    Article  Google Scholar 

  62. Abraham E, Elbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, Thomas S (2012) X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym Degrad Stab 97:2378–2387. https://doi.org/10.1016/j.polymdegradstab.2012.07.028

    Article  CAS  Google Scholar 

  63. Wu CS (2012) Characterization of cellulose acetate-reinforced aliphatic–aromatic copolyester composites. Carbohydr Polym 87:1249–1256. https://doi.org/10.1016/j.carbpol.2011.09.009

    Article  CAS  Google Scholar 

  64. Huq T, Salmieri S, Khan A, Khan RA, Le-Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderond J, Kamal MR, Lacroix M (2012) Nanocrystalline cellulose (NCC)-reinforced alginate-based biodegradable nanocomposite film. Carbohydr Polym 90:1757–1763. https://doi.org/10.1016/j.carbpol.2012.07.065

    Article  CAS  PubMed  Google Scholar 

  65. Rambo MKD, Ferreira MMC (2015) Determination of cellulose crystallinity of banana residues using near infrareded spectroscopy and multivariate analysis. J Braz Chem Soc 26:1491–1499. https://doi.org/10.5935/0103-5053.20150118

    Article  CAS  Google Scholar 

  66. Cho MJ, Park BD, Kadla JF (2012) Characterization of electrospun nanofibers of cellulose nanowhisker/polyvinyl alcohol composites. J Korean Wood Technol 40:71–77. https://doi.org/10.5658/WOOD.2012.40.2.71

    Article  Google Scholar 

  67. Maiti S, Ray D, Mitra D, Sengupta S, Kar T (2011) Structural changes of starch/polyvinyl alcohol biocomposite films reinforced with microcrystalline cellulose due to biodegradation in simulated aerobic compost environment. J Appl Polym Sci 122:2503–2511. https://doi.org/10.1002/app.34377

    Article  CAS  Google Scholar 

  68. Adhikari R, Bhandari NL, Causin V, Le HH, Radusch HJ, Michler GH, Saiter JM (2012) Study of morphology, mechanical properties, and thermal behavior of green aliphatic–aromatic copolyester/bamboo flour composites. Polym Eng Sci 52:2296–2303. https://doi.org/10.1002/pen.23335

    Article  CAS  Google Scholar 

  69. Dhar P, Gaur SS, Soundararajan N, Gupta A, Bhasney SM, Milli M, Kumar A, Katiyar V (2017) Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: Influence of filler type on thermomechanical, rheological, and barrier properties. Ind Eng Chem Res 56:4718–4735. https://doi.org/10.1021/acs.iecr.6b04699

    Article  CAS  Google Scholar 

  70. Asadieraghi M, Wan-Daud WMA (2014) Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Convers Manag 82:71–82. https://doi.org/10.1016/j.enconman.2014.03.007

    Article  CAS  Google Scholar 

  71. Voronova MI, Surov OV, Guseinov SS, Barannikov VP, Zakharov AG (2015) Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohydr Polym 130:440–447. https://doi.org/10.1016/j.carbpol.2015.05.032

    Article  CAS  PubMed  Google Scholar 

  72. D’Acierno F, Hamad WY, Michal CA, MacLachlan MJ (2020) Thermal degradation of cellulose filaments and nanocrystals. Biomacromol 21:3374–3386. https://doi.org/10.1021/acs.biomac.0c00805

    Article  CAS  Google Scholar 

  73. Osorio DA, Niinivaara E, Jankovic NC, Demir EC, Benkaddour A, Jarvis V, Aryansi C, McDermott MC, Lannoy CFD, Cranston ED (2021) Cellulose nanocrystals influence polyamide 6 crystal structure, spherulite uniformity, and mechanical performance of nanocomposite films. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.1c00765

    Article  Google Scholar 

  74. Pirani S, Abushammala HMN, Hashaikeh R (2013) Preparation and characterization of electrospun PLA/nanocrystalline cellulose-based composites. J Appl Polym Sci 130:3345–3354. https://doi.org/10.1002/app.39576

    Article  CAS  Google Scholar 

  75. Chen X, Kuhn E, Wang W, Park S, Flanegan K, Trass O, Tenlep L, Tao L, Tucker M (2013) Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover. Bioresour Technol 147:401–408. https://doi.org/10.1016/j.biortech.2013.07.109

    Article  CAS  PubMed  Google Scholar 

  76. Lu J, Sun C, Yang K, Wang K, Jiang Y, Tusiime R, Yang Y, Fan F, Sun Z, Liu Y, Zhang H, Han K, Yu M (2019) Properties of polylactic acid reinforced by hydroxyapatite modified-nanocellulose. Polymers 11:1009. https://doi.org/10.3390/polym11061009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sabaruddin FA, Tahir PMd, Lee SH (2018) Mechanical properties of PP/kenaf core nanocomposites made from nanocrystalline cellulose as an additive. J Reinf Plast Compos. https://doi.org/10.1177/0731684418804882

    Article  Google Scholar 

  78. Platnieks O, Gaidukovs S, Barkane A, Gaidukova G, Grase L, Thakur VK, Filipova I, Fridrihsone V, Marite S, Laka M (2019) Highly loaded cellulose/poly (butylene succinate) sustainable composites for woody-like advanced materials application. Molecules 25:121. https://doi.org/10.3390/molecules25010121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Allen V, Chen L, Englert M, Moussaoui A, Pisula W (2021) Control of Mullins stress softening in silicone elastomer composites by rational design of fumed silica fillers. Compos Sci Technol 214:108955. https://doi.org/10.1016/j.compscitech.2021.10

    Article  CAS  Google Scholar 

  80. Samarasekara AMPB, Kumara SPDA, Karunanayake L, Madhusanka AJS, Amarasinghe DAS (2018) Study of thermal and mechanical properties of microcrystalline cellulose- and nanocrystalline cellulose-based thermoplastic. In: IEEE Proceedings of the Moratuwa engineering research conference (MERCon). https://doi.org/10.1109/MERCon.2018.8421906

  81. Liu Y, Li Y, Chen H, Yang G, Zheng X, Zhou S (2014) Water-induced shape-memory poly(d, l-lactide)/microcrystalline cellulose composites. Carbohydr Polym 104:101–108. https://doi.org/10.1016/j.carbpol.2014.01.031

    Article  CAS  PubMed  Google Scholar 

  82. Kramer F, Klemm D, Schumann D, Heßler N, Wesarg F, Fried W, Stadermann D (2006) Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol Symp 244:136–148. https://doi.org/10.1002/masy.200651213

    Article  CAS  Google Scholar 

  83. Dai X, Xiong Z, Na H, Zhu J (2017) How does epoxidized soybean oil improve the toughness of microcrystalline cellulose-filled polylactide acid composites? Compos Sci Technol 90:9–15. https://doi.org/10.1016/j.compscitech.2013.10.009

    Article  CAS  Google Scholar 

  84. Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K, Bateman S, Edward G (2010) Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95:1704–1707. https://doi.org/10.1016/j.polymdegradstab.2010.05.027

    Article  CAS  Google Scholar 

  85. Rouison D, Couturier M, Sain M, MacMillan B, Balcom BJ (2005) Water absorption of hemp fiber/unsaturated polyester composites. Polym Compos 26:509–525. https://doi.org/10.1002/pc.20114

    Article  CAS  Google Scholar 

  86. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin J, Mohd R, Fen LB (2020) Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J Mech Behav Biomed Mater 110:103884. https://doi.org/10.1016/j.jmbbm.2020.103884

    Article  CAS  PubMed  Google Scholar 

  87. Seoane IT, Manfredi LB, Cyras VP, Torre L, Fortunati E, Puglia D (2017) Effect of cellulose nanocrystals and bacterial cellulose on disintegrability in composting conditions of plasticized PHB nanocomposites. Polymers 9:561. https://doi.org/10.3390/polym9110561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JG sincerely acknowledges the Indian National Science Academy (INSA)—Nepal Academy of Science and Technology (NAST) collaboration for providing financial support for her 3 months research stay in the Indian Institute of Guwahati (IITG), Assam, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshwar Adhikari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, J., Lach, R., Henning, S. et al. Influence of wheat stalk nanocellulose on structural, mechanical, thermal, surface and degradation properties of composites with poly(butylene adipate-co-terephthalate). Polym. Bull. 80, 7599–7625 (2023). https://doi.org/10.1007/s00289-022-04388-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04388-8

Keywords

Navigation