Skip to main content
Log in

Composites based on high-density polyethylene, polylactide and calcium carbonate: effect of calcium carbonate nanoparticles as co-compatibilizers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Investigating the compatibility mechanism of hybrid composites based on two polymers and one mineral nanofiller is a challenge that needs to be better understood. This study evaluates the effect of calcium carbonate (nCaCO3) nanoparticles as co-compatibilizers in a blend based on poly(lactic acid) (PLA), polyethylene from renewable sources (HDPE) and maleic anhydride grafting polyethylene (HDPE-g-MA or MA) using rheological and morphological analyses. Morphological assessment by scanning electron microscopy showed the formation of co-continuous-like phase morphology when nCaCO3 was added to the PLA/MA/HDPE blend, indicating that nCaCO3 affected the dispersion of PLA domains in the HDPE matrix. Rheological characterization carried out by stress relaxation and sweep frequency response analysis demonstrated that the addition of nCaCO3 improved the solid-like behavior of the blend, corroborating the morphological results. Additionally, an interaction mechanism of nCaCO3 as a co-compatibilizer was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(adapted from [46])

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hamad K, Kaseem M, Deri F (2011) Melt rheology of poly(lactic acid)/low density polyethylene polymer blend. Adv Chem Eng Sci 1:208–214

    CAS  Google Scholar 

  2. Madhu G, Bhunia H, Bajpai P, Nando GB (2016) Physico-mechanical properties and biodegradation of oxo-degradable HDPE/PLA blends. Polym Sci A 58(1):57–75

    CAS  Google Scholar 

  3. Moura I, Machado AV, Duarte FM, Botelho G, Nogueira R (2008) Preparation of biodegradable materials by reactive extrusion. Mater Sci Forum 587:520–524

    Google Scholar 

  4. Shao L, Chen J, Dai J, Chen H, Yang J, Wang Y (2015) Morphology, rheology and electrical resistivity of PLLA/HDPE/CNT nanocomposites: effect of maleic anhydride. Mater Chem Phys 152:104–112

    CAS  Google Scholar 

  5. Zebarjad SM, Sajjadi AS (2008) On the strain rate sensitivity of HDPE/CaCO3 nanocomposites. Mater Sci Eng A 475:365–367

    Google Scholar 

  6. Ghari HS, Jalali-Arani A (2016) Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: study on the structure, cure behavior, static and dynamic-mechanical properties. Appl Clay Sci 119:348–357

    Google Scholar 

  7. Hamad K, Kaseem M, Deri F (2011) Rheological and mechanical characterization of poly(lactic acid)/polypropylene polymer blends. J Polym Res 18(6):1799–1806

    CAS  Google Scholar 

  8. Wang Y, Hillmyer MAJ (2001) Polyethylene-poly(l-lactide) diblock copolymers: synthesis and compatibilization of poly(l-lactide)/polyethylene blends. Polym Sci Part A 39:2755–2766

    CAS  Google Scholar 

  9. Gallego R, López-Quintana S, Basurto F, Nuñez K, Villarreal N, Merino JC (2014) Synthesis of new compatibilizers to poly(lactic acid) blends. Polym Eng Sci 4:522–530

    Google Scholar 

  10. Thurbet CM, Xu Y, Myers JC, Lodge TP, Macosko CW (2015) Accelerating reactive compatibilization of PE/PLA blends by an interfacially localized catalyst. Macro Lett 4(1):30–33

    Google Scholar 

  11. Anderson KS, Lim SH, Hillmyer MA (2003) Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci 89:3757–3768

    CAS  Google Scholar 

  12. Nuñez K, Rosales C, Perera R, Villarreal N, Pastor JM (2012) Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym Eng Sci 52:988–1004

    Google Scholar 

  13. Wu D, Hakkarainen M (2015) Recycling PLA to multifunctional oligomeric compatibilizers for PLA/starch composites. Eur Polym J 64:126–137

    CAS  Google Scholar 

  14. Oliveira AG, Silva ALN, Sousa AMF, Leite MCAM, Jandorno JC, Escócio VA (2016) Composites based on green high-density polyethylene, polylactide and nanosized calcium carbonate: effect of the processing parameter and blend composition. Mater Chem Phys 181:344–351

    Google Scholar 

  15. Taguet A, Cassagnau P, Lopez-Cuesta JM (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563

    CAS  Google Scholar 

  16. Seven KM, Cogen JM, Gilchrist JF (2016) Nucleating agents for high-density polyethylene—a review. Polym Eng Sci 56(5):541–554

    CAS  Google Scholar 

  17. Han L, Li X, Li Y, Huang T, Wang Y, Wu J, Xiang F (2010) Influence of annealing on microstructure and physical properties of isotactic polypropylene/calcium carbonate composites with β-phase nucleating agent. Mater Sci Eng A 527:3176–3185

    Google Scholar 

  18. Lin Y, Chen H, Chan C-M, Wu J (2011) Nucleating effect of calcium stearate coated CaCO3 nanoparticles on polypropylene. J Colloid Interface Sci 354:570–576

    CAS  PubMed  Google Scholar 

  19. Kemal I, Whittle A, Burford R, Vodenitcharova T (2013) Toughening of unmodified polyvinylchloride through the addition of nanoparticle calcium carbonate and titanate coupling agent. J Appl Polym Sci 127:2339–2353

    CAS  Google Scholar 

  20. Hun-Sik K, Byung Hyun P, Jae Hoon C, Jin-San Y (2008) Mechanical properties and thermal stability of poly(l-lactide)/calcium carbonate composites. J Appl Polym Sci 109:3087–3092

    Google Scholar 

  21. Puyvelde PVV, Moldenaers P (2015) Rheology and morphology development in immiscible polymer blends. Rheol Rev 101–145. http://www.bsr.org.uk. Accessed July 2017

  22. Vinckier I, Moldemers P, Mewis JJ (1996) Relationship between rheology and morphology of model blends in steady shear flow. Rheology 40(4):613–631

    CAS  Google Scholar 

  23. Jansseune T, Mewis J, Moldenaers P, Minale M, Maffettone PL (2000) Rheology and rheological morphology determination in immiscible two-phase polymer model blends. J Non Newt Fluid Mech 93:153–165

    CAS  Google Scholar 

  24. Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem Mater 10(5):1227–1235

    CAS  Google Scholar 

  25. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270(2):134–139

    CAS  Google Scholar 

  26. Feng J, Chan C, Li J (2003) A method to control the dispersion of carbon black in an immiscible polymer blend. Polym Eng Sci 43(5):1058–1063

    CAS  Google Scholar 

  27. Liebscher M, Tzounis L, Pötschke P, Heinrich G (2013) Influence of the viscosity ratio in PC/SAN blends filled with MWCNTs on the morphological, electrical, and melt rheological properties. Polymer 54(25):6801–6808

    CAS  Google Scholar 

  28. Lu X, Tang L, Wang L, Zhao J, Li D, Wu Z, Xiao P (2016) Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polym Test 54:90–97

    CAS  Google Scholar 

  29. Omonov TS, Harrats C, Moldenaers P, Groeninckx G (2007) Phase continuity detection and phase inversion phenomena in immiscible polypropylene/polystyrene blends with different viscosity ratios. Polymer 48:5917–5927

    CAS  Google Scholar 

  30. Pötschke P, Paul RDJ (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci Part C 43(1):87–141

    Google Scholar 

  31. Nesterov AE, Lipatov YS (1999) Compatibilizing effect of a filler in binary polymer mixtures. Polymer 40:1347–1349

    CAS  Google Scholar 

  32. Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50:1333–1350

    CAS  Google Scholar 

  33. Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45:8403–8413

    CAS  Google Scholar 

  34. Ray SS, Bousmina M (2005) Effect of organic modification on the compatibilization efficiency of clay in an immiscible polymer blend. Macromol Rapid Commun 26:1639–1646

    CAS  Google Scholar 

  35. Ray SS, Bousmina M, Maazouz A (2006) Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend. Polym Eng Sci 46:1121–1129

    CAS  Google Scholar 

  36. Liu Y, Kontopoulou M (2006) The structure and physical properties of polypropylene and thermoplastic olefin nanocomposites containing nanosilica. Polymer 42:7731–7739

    Google Scholar 

  37. Ginzburg VV (2005) Influence of nanoparticles on miscibility of polymer blends. A simple theory. Macromolecules 38(6):2362–2367

    CAS  Google Scholar 

  38. Hrnjak-Murgic Z, Jelcic Z, Kovacevic V, Mlinac-Misak M, Jelencic J (2002) Molecular and morphological characterization of immiscible SAN/EPDM blends filled by nano filler. Macromol Mater Eng 287:684–692

    CAS  Google Scholar 

  39. Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48(26):7632–7644

    CAS  Google Scholar 

  40. Lam TD, Hoang TVD, Quang T, Kim JS (2009) Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites. Mater Sci Eng A 501:87–93

    Google Scholar 

  41. Durmus A, Kasgos A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492–4502

    CAS  Google Scholar 

  42. Garcia PS, Schuracchio CH, Cruz AS (2013) Effect of residual contaminants and of different types of extrusion processes on the rheological properties of the post-consumer polypropylene. Polym Test 32:1237–1243

    CAS  Google Scholar 

  43. Chen R, Zou W, Zhang H, Zhang G, Yang Z, Jin G, Qu J (2015) Thermal behavior, dynamic mechanical properties and rheological properties of poly(butylene succinate) composites filled with nanometer calcium carbonate. Polym Test 42:160–167

    CAS  Google Scholar 

  44. Ábrányi Á, Százdi L, Pukánszky B, Vancso GJ, Pukánszky B (2006) Formation and detection of clay network structure in poly(propylene)/layered silicate nanocomposites. Macromol Rapid Commun 27(2):132–135

    Google Scholar 

  45. Cipriano TF, Silva ALN, Silva AHMFT, Sousa AMF, Rocha MCG (2013) Rheological and morphological properties of composites based on polylactide and talc. J Mater Sci Eng (B) 3(11):695–699

    CAS  Google Scholar 

  46. Malkin AY. Rheology fundamentals. Chem Tec Publishing (eds), Toronto/Canada. ISBN 1-895198-09-7

Download references

Acknowledgements

Authors thank BRASKEM, CHEMTURA and LAGOS for HDPE, HDPE-g-MA and nCaCO3 donation, respectively, and CNPq for the scholarship grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lucia Nazareth da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A.G., Moreno, J.F., de Sousa, A.M.F. et al. Composites based on high-density polyethylene, polylactide and calcium carbonate: effect of calcium carbonate nanoparticles as co-compatibilizers. Polym. Bull. 77, 2889–2904 (2020). https://doi.org/10.1007/s00289-019-02887-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02887-9

Keywords

Navigation