Skip to main content
Log in

Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Various zeolites (4A, Y, 13X) and related fillers (molecular sieves and coal fly ash) were used to prepare PLA composites and to assess their degrading effect on the polyester matrix under different processing conditions, at various zeolite/filler loadings. In this objective, untreated fillers, as well as washed and thermally activated zeolites, were used. PLA–zeolite composites were produced by melt-blending step followed by the evaluation of rheological information and molecular and thermal characteristics. The degradation of PLA during the preparation and processing of PLA–zeolite composites, or due to the presence of fillers, was evidenced by specific analyses (SEC, DSC, TGA, TG-FTIR). PLA degradation was mainly dependent on the nature of zeolite, filler loading, and thermal and processing history. The results of the study suggest that a stronger degradation effect is obtained by the addition of zeolite 4A into PLA (at loading of 5–10%) with respect to other zeolites (e.g., 13X and Y). It was also revealed the key roles of the temperature and residence time (as parameters in melt-mixing process), free alkalinity level, and water uptake in determining the ultimate characteristics of composites. The washing and thermal activation pretreatments of fillers have diminished in some cases the degradation of PLA matrix. Finally, the study also highlights the zeolite grades capable of being used to produce new PLA composites with competitive properties and those that could be of interest to improve PLA recycling by pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Adapted with permission from: Xu L, Crawford K, Gorman CB (2011) [54]. Copyright (2011) American Chemical Society

Fig. 9

Reprinted from Ref. [60]

Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  2. Jamshidian M, Tehrany EA, Imran M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  CAS  Google Scholar 

  3. Madhavan NK, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

    Article  CAS  Google Scholar 

  4. Perego G, Cella GD (2010) Mechanical Properties. Poly(Lactic Acid). Wiley, New York, pp 141–153

    Chapter  Google Scholar 

  5. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014

    Article  CAS  Google Scholar 

  6. Anderson KS, Schreck KM, Hillmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108. https://doi.org/10.1080/15583720701834216

    Article  CAS  Google Scholar 

  7. Murariu M, Bonnaud L, Yoann P et al (2010) New trends in polylactide (PLA)-based materials: “Green” PLA–Calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab 95:374–381. https://doi.org/10.1016/j.polymdegradstab.2009.11.032

    Article  CAS  Google Scholar 

  8. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  9. Abe H, Takahashi N, Kim KJ et al (2004) Thermal degradation processes of end-capped poly(L-lactide)s in the presence and absence of residual zinc catalyst. Biomacromol 5:1606–1614. https://doi.org/10.1021/bm0497872

    Article  CAS  Google Scholar 

  10. Patwa R, Singh M, Kumar A, Katiyar V (2018) Kinetic modelling of thermal degradation and non-isothermal crystallization of silk nano-discs reinforced poly (lactic acid) bionanocomposites. Polym Bull 76:1349–1382. https://doi.org/10.1007/s00289-018-2434-7

    Article  CAS  Google Scholar 

  11. Gu L, Qiu J, Qiu C et al (2018) Mechanical properties and degrading behaviors of aluminum hypophosphite-poly(Lactic Acid) (PLA) nanocomposites. Polym Plast Technol Eng 58(2):126–138. https://doi.org/10.1080/03602559.2018.1466169

    Article  CAS  Google Scholar 

  12. Okamoto K, Toshima K, Matsumura S (2005) Degradation of poly(lactic acid) into repolymerizable oligomer using montmorillonite K10 for chemical recycling. Macromol Biosci 5:813–820. https://doi.org/10.1002/mabi.200500086

    Article  CAS  PubMed  Google Scholar 

  13. Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew Sustain Energy Rev 14:233–248. https://doi.org/10.1016/j.rser.2009.07.005

    Article  CAS  Google Scholar 

  14. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  15. Al-Salem SM, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci 36:103–129. https://doi.org/10.1016/j.pecs.2009.09.001

    Article  CAS  Google Scholar 

  16. Cleetus C, Thomas S, Varghese S (2013) Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. J Energy 2013:10. https://doi.org/10.1155/2013/608797

    Article  CAS  Google Scholar 

  17. Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6:514. https://doi.org/10.3390/en6010514

    Article  CAS  Google Scholar 

  18. Huang Z, Guo Y, Zhang T et al (2013) Fabrication and characterizations of zeolite β–filled polyethylene composite films. Packag Technol Sci 26:1–10. https://doi.org/10.1002/pts.1986

    Article  CAS  Google Scholar 

  19. Feng C, Zhang Y, Liu S et al (2013) Synergistic effects of 4A zeolite on the flame retardant properties and thermal stability of a novel halogen-free PP/IFR composite. Polym Adv Technol 24:478–486. https://doi.org/10.1002/pat.3108

    Article  CAS  Google Scholar 

  20. Kim H-S, Kim H-J (2008) Influence of the zeolite type on the mechanical–thermal properties and volatile organic compound emissions of natural-flour-filled polypropylene hybrid composites. J Appl Polym Sci 110:3247–3255. https://doi.org/10.1002/app.28853

    Article  CAS  Google Scholar 

  21. Fernández A, Soriano E, Hernández-Muñoz P, Gavara R (2010) Migration of antimicrobial silver from composites of polylactide with silver zeolites. J Food Sci 75:E186–E193. https://doi.org/10.1111/j.1750-3841.2010.01549.x

    Article  CAS  PubMed  Google Scholar 

  22. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th revised edn. Elsevier, Amsterdam

    Google Scholar 

  23. Kim H-S, Lee B-H, Kim H-J, Yang H-SS (2011) Mechanical-thermal properties and VOC emissions of natural-flour-filled biodegradable polymer hybrid bio-composites. J Polym Environ 19:628–636. https://doi.org/10.1007/s10924-011-0313-5

    Article  CAS  Google Scholar 

  24. Jiraroj D, Tungasmita S, Tungasmita DN (2014) Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity. Powder Technol 264:418–422. https://doi.org/10.1016/j.powtec.2014.05.049

    Article  CAS  Google Scholar 

  25. Fonseca AM, Neves IC (2013) Study of silver species stabilized in different microporous zeolites. Microporous Mesoporous Mater 181:83–87. https://doi.org/10.1016/j.micromeso.2013.07.018

    Article  CAS  Google Scholar 

  26. Audisio G, Bertini F, Beltrame PL, Carniti P (1992) Catalytic degradation of polyolefins. Makromol Chemie Macromol Symp 57:191–209. https://doi.org/10.1002/masy.19920570117

    Article  CAS  Google Scholar 

  27. Neves IC, Botelho G, Machado AV, Rebelo P (2006) The effect of acidity behaviour of Y zeolites on the catalytic degradation of polyethylene. Eur Polym J 42:1541–1547. https://doi.org/10.1016/j.eurpolymj.2006.01.021

    Article  CAS  Google Scholar 

  28. Coelho A, Costa L, Marques MM et al (2012) The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A Gen 413:183–191. https://doi.org/10.1016/j.apcata.2011.11.010

    Article  CAS  Google Scholar 

  29. Durmuş A, Koç SN, Pozan GS et al (2005) Thermal-catalytic degradation kinetics of polypropylene over BEA, ZSM-5 and MOR zeolites. Appl Catal B Environ 61:316–322. https://doi.org/10.1016/j.apcatb.2005.06.009

    Article  CAS  Google Scholar 

  30. Gobin K, Manos G (2004) Thermogravimetric study of polymer catalytic degradation over microporous materials. Polym Degrad Stab 86:225–231. https://doi.org/10.1016/j.polymdegradstab.2004.05.001

    Article  CAS  Google Scholar 

  31. Auras R, Selke S, Yuzay IE (2010) Poly(Lactic Acid) and zeolite composites and method of manufacturing the same, Patent US20100236969A1

  32. Yuzay IE, Auras R, Selke S (2010) Poly(lactic acid) and zeolite composites prepared by melt processing: morphological and physical–mechanical properties. J Appl Polym Sci 115:2262–2270. https://doi.org/10.1002/app.31322

    Article  CAS  Google Scholar 

  33. Yuzay IE, Auras R, Soto-Valdez H, Selke S (2010) Effects of synthetic and natural zeolites on morphology and thermal degradation of poly(lactic acid) composites. Polym Degrad Stab 95:1769–1777. https://doi.org/10.1016/j.polymdegradstab.2010.05.011

    Article  CAS  Google Scholar 

  34. Ye Q, Huang Z, Hao Y et al (2016) Kinetic study of thermal degradation of poly(l-lactide) filled with β-zeolite. J Therm Anal Calorim 124:1471–1484. https://doi.org/10.1007/s10973-016-5314-0

    Article  CAS  Google Scholar 

  35. Bendahou D, Bendahou A, Grohens Y, Kaddami H (2015) New nanocomposite design from zeolite and poly(lactic acid). Ind Crops Prod 72:107–118. https://doi.org/10.1016/j.indcrop.2014.12.055

    Article  CAS  Google Scholar 

  36. Pires M, Murariu M, Cardoso MA et al (2013) Synthesis and characterization of novel zeolite poly(lactic acid) composites. In: Proceedings of the 12th Brazilian congress on polymers, Florianópolis, Brazil

  37. Hao YH, Huang Z, Wang JW et al (2016) Improved thermal stability of poly (l-lactide) with the incorporation of zeolite ZSM-5. Polym Test 49:46–56. https://doi.org/10.1016/j.polymertesting.2015.11.010

    Article  CAS  Google Scholar 

  38. Hao Y, Huang Z (2018) Effects of different zeolites on poly(L-Lactide) thermal degradation BT. In: Ouyang Y, Xu M, Zhao P et al (eds) Applied sciences in graphic communication and packaging. Springer, Singapore, pp 849–855

    Chapter  Google Scholar 

  39. Gregorova A, Machovsky M, Wimmer R (2012) Viscoelastic properties of mineral-filled poly(lactic acid) composites. Int J Polym Sci 2012:1–6. https://doi.org/10.1155/2012/252981

    Article  CAS  Google Scholar 

  40. Cardoso AM, Horn MB, Ferret LS et al (2015) Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. J Hazard Mater 287:69. https://doi.org/10.1016/j.jhazmat.2015.01.042

    Article  CAS  PubMed  Google Scholar 

  41. Cardoso AM, Paprocki A, Ferret LS et al (2015) Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 139:59–67. https://doi.org/10.1016/j.fuel.2014.08.016

    Article  CAS  Google Scholar 

  42. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift Zeitschrift für Polym 251:980–990. https://doi.org/10.1007/BF01498927

    Article  CAS  Google Scholar 

  43. Murariu M, Doumbia A, Bonnaud L et al (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12:1762–1771. https://doi.org/10.1021/bm2001445

    Article  CAS  PubMed  Google Scholar 

  44. Kutchko BG, Kim AG (2006) Fly ash characterization by SEM-EDS. Fuel 85:2537–2544. https://doi.org/10.1016/j.fuel.2006.05.016

    Article  CAS  Google Scholar 

  45. Ferrarini SF, Cardoso AM, Paprocki A, Pires M (2016) Integrated synthesis of zeolites using coal fly ash: element distribution in the products, washing waters and effluent. J Braz Chem Soc 27:2034–2045. https://doi.org/10.5935/0103-5053.20160093

    Article  CAS  Google Scholar 

  46. Melo CR, Riella HG, Kuhnen NC et al (2012) Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater Sci Eng B 177:345–349. https://doi.org/10.1016/j.mseb.2012.01.015

    Article  CAS  Google Scholar 

  47. Okamoto M (2012) Polylactide/clay nano-biocomposites. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London, pp 77–118

    Chapter  Google Scholar 

  48. Sinha Ray S, Okamoto M, Ray SS et al (2003) Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun 24:815–840. https://doi.org/10.1002/marc.200300008

    Article  CAS  Google Scholar 

  49. Breck DW (1978) Zeolite molecular sieves. Wiley-Interscience, New York

    Google Scholar 

  50. Esposito S, Marocco A, Dell’Agli G et al (2015) Relationships between the water content of zeolites and their cation population. Microporous Mesoporous Mater 202:36–43. https://doi.org/10.1016/j.micromeso.2014.09.041

    Article  CAS  Google Scholar 

  51. Lim L-TT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  52. Filippone G, Carroccio SC, Curcuruto G et al (2015) Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state e Part II: thermal and thermo-oxidative degradation of polyamide 11/organo-clay nanocomposites. Polymer (Guildf) 73:102–110

    Article  CAS  Google Scholar 

  53. Filippone G, Carroccio SC, Mendichi R et al (2015) Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state—Part I: thermal and thermo-oxidative degradation of polyamide 11. Polymer (Guildf) 72:134–141. https://doi.org/10.1016/j.polymer.2015.06.059

    Article  CAS  Google Scholar 

  54. Carrasco F, Pags P, Gámez-Pérez J et al (2010) Kinetics of the thermal decomposition of processed poly(lactic acid). Polym Degrad Stab 95:2508–2514. https://doi.org/10.1016/j.polymdegradstab.2010.07.039

    Article  CAS  Google Scholar 

  55. Fan Y, Nishida H, Mori T et al (2004) Thermal degradation of poly(l-lactide): effect of alkali earth metal oxides for selective l, l-lactide formation. Polymer (Guildf) 45:1197–1205. https://doi.org/10.1016/j.polymer.2003.12.058

    Article  CAS  Google Scholar 

  56. Narayan R, Wu WM, Criddle CS et al (2013) Lactide production from thermal depolymerization of PLA with applications to production of PLA or other bioproducts. 1 United States Patent Application 20130023674

  57. Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer (Guildf) 45:8239–8251. https://doi.org/10.1016/j.polymer.2004.09.057

    Article  CAS  Google Scholar 

  58. Srinivasan G, Grewell D (2013) Depolymerization of polylactic acid, Patent US20130096342A1

  59. Xu L, Crawford K, Gorman CB (2011) Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 44:4777–4782. https://doi.org/10.1021/ma2000948

    Article  CAS  Google Scholar 

  60. Nishida H (2010) Thermal Degradation. In: Auras R, Lim LT, Selke S, Tsuji H (eds) Poly(Lactic Acid). Wiley, New York, pp 401–412

    Chapter  Google Scholar 

  61. Abe H, Takahashi N, Kim KJ, Mochizuki M (2004) Thermal degradation processes of end-capped poly(L-lactide) s in the presence and absence of residual zinc catalyst. Biomacromolecules 5:1606–1614

    Article  CAS  Google Scholar 

  62. Kopinke FD, Remmler M, Mackenzie K et al (1996) Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polym Degrad Stab 53:329–342. https://doi.org/10.1016/0141-3910(96)00102-4

    Article  CAS  Google Scholar 

  63. Wachsen O, Reichert KH, Krüger RP et al (1997) Thermal decomposition of biodegradable polyesters—III. Studies on the mechanisms of thermal degradation of oligo-L-lactide using SEC, LACCC and MALDI-TOF-MS. Polym Degrad Stab 55:225–231. https://doi.org/10.1016/S0141-3910(96)00127-9

    Article  CAS  Google Scholar 

  64. Liu X, Zou Y, Li W et al (2006) Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym Degrad Stab 91:3259–3265. https://doi.org/10.1016/j.polymdegradstab.2006.07.004

    Article  CAS  Google Scholar 

  65. Ukei H, Hirose T, Horikawa S et al (2000) Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts. Catal Today 62:67. https://doi.org/10.1016/S0920-5861(00)00409-0

    Article  CAS  Google Scholar 

  66. Feng L, Feng S, Bian X et al (2018) Pyrolysis mechanism of Poly(lactic acid) for giving lactide under the catalysis of tin. Polym Degrad Stab 157:212–223. https://doi.org/10.1016/j.polymdegradstab.2018.10.008

    Article  CAS  Google Scholar 

  67. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H et al (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv, Rev

    Book  Google Scholar 

  68. Zou H, Yi C, Wang L et al (2009) Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim 97:929–935. https://doi.org/10.1007/s10973-009-0121-5

    Article  CAS  Google Scholar 

  69. Chen X, Zhuo J, Jiao C (2012) Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stab 97:2143–2147. https://doi.org/10.1016/j.polymdegradstab.2012.08.016

    Article  CAS  Google Scholar 

  70. Herrera-Kao WA, Loría-Bastarrachea MI, Pérez-Padilla Y et al (2018) Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polym Bull 75:4191–4205. https://doi.org/10.1007/s00289-017-2260-3

    Article  CAS  Google Scholar 

  71. McNeill IC, Leiper HA (1985) Degradation studies of some polyesters and polycarbonates-1. Polylactide: general features of the degradation under programmed heating conditions. Polym Degrad Stab 11:267–285. https://doi.org/10.1016/0141-3910(85)90050-3

    Article  CAS  Google Scholar 

  72. He DL, Yin GF, Dong FQ et al (2010) Research on the additives to reduce radioactive pollutants in the building materials containing fly ash. J Hazard Mater 177:573–581. https://doi.org/10.1016/j.jhazmat.2009.12.071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors from the University of Mons & Materia Nova thank the Wallonia Region, Nord-Pas de Calais Region and European Community for the financial support in the frame of the INTERREG IV—NANOLAC project and FEDER 2014-2020 program (PROSTEM project). M. Pires thank to the University of Mons, PUCRS and CNPq (Grants 309623/2012-0; 551433/2010-8) for the post-doc grant and financial support. A. Cardoso thanks CAPES for Ph.D. Grant (01714947092). Special thanks are addressed to Mr. Francisco CACHO (IQE, Spain) for zeolite samples and their characterization, information kindly sent for utilization in the frame of this study. The authors thank to Dr. Olivier Persenaire, Anne-Laure Dechief and OlteaMurariu from Materia Nova R&D Center for helpfully discussions and assistance in the preparation and characterization of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marçal Pires.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, M., Murariu, M., Cardoso, A.M. et al. Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending. Polym. Bull. 77, 2111–2137 (2020). https://doi.org/10.1007/s00289-019-02846-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02846-4

Keywords

Navigation