Skip to main content
Log in

Effect of NiO NPs doping on the structure and optical properties of PVC polymer films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The goal of this study was to investigate the structure and optical properties of the prepared PVC/NiO nanocomposites. The samples were characterized via XRD, TEM, SEM, and UV–Vis spectrophotometer experimental measurements. The partial crystal structure of PVC/NiO nanocomposites and cubic structure of NiO nanoparticles were explored by X-ray diffraction. SEM exhibited the good distribution of the nanoparticles in PVC films. Linear optical parameters: refractive index and normalized absorption, increased whenever transmission and reflection reduced by adding NiO nanoparticles. Direct and indirect optical band gaps were obtained from Tauc’s formula, and it was found that both direct and indirect optical band gaps decrease as more NiO nanoparticles added. The direct optical band gap decreases from 5.20 to 5.15 eV. The optical conductivity increased by increasing the content of NiO nanoparticles. The dispersion parameters: oscillator energy \(E_{0}\), dispersion energy \(E_{\text{d}}\), plasma angular frequency \(w_{\text{p}}\), optical momentum of dispersion \(M_{ - 1}\) and \(M_{ - 3}\), and static refractive index, were calculated by using Wemple and DiDominco model. The nonlinear optical susceptibility \(x^{(3)}\) and nonlinear refractive index \(n_{2}\) were evaluated from the linear optical parameters using semiempirical relation. The increasing in nonlinear parameters \(x^{(3)}\) and \(n_{2}\) suggest the use of PVC/NiO nanocomposites for nonlinear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alias AN, Zabidi ZM, Ali AMM, Harun MK, Yahya MZA (2013) Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Int J Appl Sci Technol 3(5):11–38

    Google Scholar 

  2. Godovsky DY (2000) Device applications of polymer-nanocomposites. In: Quirk RP, Yoo T, Lee Y, Kim J, Lee B (eds) Biopolymers·PVA hydrogels, anionic polymerisation nanocomposites. Springer, Berlin, pp 163–205

    Chapter  Google Scholar 

  3. Dimitry OIH, Sayed WM, Mazroua AM, Saad ALG (2009) Poly (vinyl chloride)/nanoclay nanocomposites—electrical and mechanical properties. Polimery 54(1):8–14

    Article  CAS  Google Scholar 

  4. Mallakpour S, Abdolmaleki A, Tabebordbar H (2016) Production of PVC/α-MnO2-KH550 nanocomposite films: morphology, thermal, mechanical and Pb(II) adsorption properties. Eur Polym J 78:141–152

    Article  CAS  Google Scholar 

  5. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23(5):85

    Article  CAS  Google Scholar 

  6. Al-Hartomy OA, Al-Salamy F, Al-Ghamdi AA, Abdel Fatah M, Dishovsky N, El-Tantawy F (2011) Influence of graphite nanosheets on the structure and properties of PVC-based nanocomposites. J Appl Polym Sci 120(6):3628–3634

    Article  CAS  Google Scholar 

  7. Broza G, Piszczek K, Schulte K, Sterzynski T (2007) Nanocomposites of poly (vinyl chloride) with carbon nanotubes (CNT). Compos Sci Technol 67(5):890–894

    Article  CAS  Google Scholar 

  8. Al-Ghamdi AA, El-Tantawy F, Aal NA, El-Mossalamy EH, Mahmoud WE (2009) Stability of new electrostatic discharge protection and electromagnetic wave shielding effectiveness from poly (vinyl chloride)/graphite/nickel nanoconducting composites. Polym Degrad Stab 94(6):980–986

    Article  CAS  Google Scholar 

  9. Taha TA, Azab AA (2019) Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J Mol Struct 1178:39–44

    Article  CAS  Google Scholar 

  10. Obreja P, Cristea D, Purica M, Gavrila R, Comanescu F (2007) Polymers doped with metal oxide nanoparticles with controlled refractive index. Polimery 52(9):679–685

    Article  CAS  Google Scholar 

  11. Elashmawi IS, Hakeem NA, Marei LK, Hanna FF (2010) Structure and performance of ZnO/PVC nanocomposites. Physica B 405(19):4163–4169

    Article  CAS  Google Scholar 

  12. Taha TA, Ismail Z, Elhawary MM (2018) Structural, optical and thermal characterization of PVC/SnO2 nanocomposites. Appl Phys A Mater Sci Process 124(4):307

    Article  CAS  Google Scholar 

  13. Taha TA (2017) Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites. J Mater Sci Mater Electron 28(16):12108–12114

    Article  CAS  Google Scholar 

  14. Ebnalwaled AA, Thabet A (2016) Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth Met 220:374–383

    Article  CAS  Google Scholar 

  15. Hassen A, El-Sayed S, Mm M, El Sayed A (2014) Preparation, dielectric and optical properties of Cr2O3/PVC nanocomposite films. J Adv Phys 4:571–584

    Article  Google Scholar 

  16. Mahmoud WE, Al-Ghamdi AA (2011) The influence of Cd (ZnO) on the structure, optical and thermal stabilities of polyvinyl chloride nanocomposites. Polym Compos 32(7):1143–1147

    Article  CAS  Google Scholar 

  17. Abdul Nabi M, Yusop RM, Yousif E, Abdullah BM, Salimon J, Salih N, Zubairi SI (2014) Effect of nano ZnO on the optical properties of poly (vinyl chloride) films. Int J Polym Sci 2014:697–809

    Google Scholar 

  18. El Sayed AM, El-Sayed S, Morsi WM, Mahrous S, Hassen A (2014) Synthesis, characterization, optical, and dielectric properties of polyvinyl chloride/cadmium oxide nanocomposite films. Polym Compos 35(9):1842–1851

    Article  CAS  Google Scholar 

  19. Hasan M, Banerjee AN, Lee M (2015) Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films. Bull Mater Sci 38(2):283–290

    Article  CAS  Google Scholar 

  20. Abdel-Baset T, Elzayat M, Mahrous S (2016) Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int J Polym Sci 2016:1–10

    Article  CAS  Google Scholar 

  21. Hamad TK, Yusop RM, Abdullah B, Yousif E (2014) Laser induced modification of the optical properties of nano-ZnO doped PVC films. Int J Polym Sci 2014:803–806

    Article  CAS  Google Scholar 

  22. Lee HM, Chung HK, Park HG, Jeong HC, Kim JH, Park TK, Seo DS (2015) Nickel oxide nanoparticles doped liquid crystal system for superior electro-optical properties. J Nanosci Nanotechnol 15(10):8139–8143

    Article  CAS  PubMed  Google Scholar 

  23. Chu L, Liu W, Qin Z, Zhang R, Hu R, Yang J, Li XA (2018) Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes. Solar Energy Mater Solar Cells 178:164–169

    Article  CAS  Google Scholar 

  24. Du Y, Wang W, Li X, Zhao J, Ma J, Liu Y, Lu G (2012) Preparation of NiO nanoparticles in microemulsion and its gas sensing performance. Mater Lett 68:168–170

    Article  CAS  Google Scholar 

  25. Rai AK, Anh LT, Park CJ, Kim J (2013) Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceram Int 39(6):6611–6618

    Article  CAS  Google Scholar 

  26. Zhang M, Ma T, Wang Y, Pan D, Xie J (2018) Microwave synthesis of three dimensional N-doped graphene self-supporting networks coated with Zinc/Nickel oxide nanocrystals for supercapacitor electrode applications. J Mater Sci: Mater Electron 29(8):6991–7001

    CAS  Google Scholar 

  27. Chauhan R, Srivastava AK, Tripathi A, Srivastava KK (2011) Linear and nonlinear optical changes in amorphous As2Se3 thin film upon UV exposure. Prog Nat Sci Mater Int 21(3):205–210

    Article  Google Scholar 

  28. Zahran HY, Yahia IS, Alamri FH (2017) Nanostructured pyronin Y thin films as a new organic semiconductor: linear/nonlinear optics, band gap and dielectric properties. Physica B 513:95–102

    Article  CAS  Google Scholar 

  29. Maaref S, Roz Z, Sun SS, Seo K, Winston K, Bonner CE (2004) Fumaryl chloride and maleic anhydride-derived crosslinked functional polymers for nonlinear optical waveguide applications. J Appl Polym Sci 92(1):317–322

    Article  CAS  Google Scholar 

  30. Tripathi SK, Kaur R (2015) Investigation of non-linear optical properties of CdS/PS polymer nanocomposite synthesized by chemical route. Opt Commun 352:55–62

    Article  CAS  Google Scholar 

  31. Gündüz B (2015) Optical properties of poly [2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym Bull 72(12):3241–3267

    Article  CAS  Google Scholar 

  32. Ticha H, Tichy L (2002) Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J Optoelectron Adv Mater 4(2):381–386

    CAS  Google Scholar 

  33. Divya S, Nampoori VPN, Radhakrishnan P, Mujeeb A (2014) Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite—a comparison between semi empirical relation and Z-Scan results. Curr Appl Phys 14(1):93–98

    Article  Google Scholar 

  34. Muthu KS, Perumal P (2017) Synthesis and characterization of NiO Nanoparticles using egg white method. J Mater Sci: Mater Electron 28(13):9612–9617

    Google Scholar 

  35. Fardood ST, Ramazani A, Moradi S (2017) A novel green synthesis of nickel oxide nanoparticles using arabic gum. Chem J Mold 12(1):115–118

    Article  CAS  Google Scholar 

  36. Abd-Elhady AM, Ibrahim ME, Taha TA, Izzularab MA (2016) Dielectric and thermal properties of transformer oil modified by semiconductive CdS quantum dots. J Electron Mater 45:4755–4761

    Article  CAS  Google Scholar 

  37. Taha TA, Abouhaswa AS (2018) Preparation and optical properties of borate glass doped with MnO2. J Mater Sci Mater Electron 29:8100–8106

    Article  CAS  Google Scholar 

  38. El-Rabaie S, Taha TA, Higazy AA (2015) Novel PbSe nanocrystals doped fluorogermanate glass matrix. Mater Sci Semicond Process 34:88–92

    Article  CAS  Google Scholar 

  39. Taha TA, Saleh A (2018) Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl Phys A Mater Sci Process 124:600

    Article  CAS  Google Scholar 

  40. Wemple SH, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3(4):1338

    Article  Google Scholar 

  41. Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Determination and analysis of the dispersive optical constants of some organic thin films. Physica B 351(1–2):53–58

    Article  CAS  Google Scholar 

  42. Sakr GB, Yahia IS, Fadel M, Fouad SS, Romčević N (2010) Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films. J Alloys Compd 507(2):557–562

    Article  CAS  Google Scholar 

  43. Donya H, Taha TA (2018) Preparation, structure and optical properties of ZnTe and PbTe nanocrystals grown in fluorophosphate glass. J Mater Sci Mater Electron 29(10):8610–8616

    Article  CAS  Google Scholar 

  44. Taha TA, Rammah YS (2016) Optical characterization of new borate glass doped with titanium oxide. J Mater Sci Mater Electron 27(2):1384–1390

    Article  CAS  Google Scholar 

  45. Badran HA, Al-Mudhaffer MF, Hassan QM, Al-Ahmad AY (2012) Study of the linear optical properties and surface energy loss of 5′,5″-dibromo-o-cresolsulfophthalein thin films. Chalcogenide Lett 9(12):483–493

    CAS  Google Scholar 

  46. Desai HN, Dhimmar JM (2015) Study of linear and non-linear optical parameters of zinc Selenide thin film. Int J Eng Res Appl 5(6):117–122

    Google Scholar 

  47. Wahab FA, El-Diasty F, Abdel-Baki M (2009) Dispersion dependence of second-order refractive index and complex third-order optical susceptibility in oxide glasses. Phys Lett A 373(42):3855–3860

    Article  CAS  Google Scholar 

  48. Taha TA (2018) Optical properties of PVC/Al2O3 nanocomposites films. Polym Bull. https://doi.org/10.1007/s00289-018-2417-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Taha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, T.A., Hendawy, N., El-Rabaie, S. et al. Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76, 4769–4784 (2019). https://doi.org/10.1007/s00289-018-2633-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2633-2

Keywords

Navigation