Skip to main content
Log in

Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We report preparation of Titanium dioxide (TiO2) nanoparticles doped PVA/PVP polymer nanocomposites by solvent casting technique. FTIR spectra and XRD studies signify the structural modifications taking place in the nanocomposites. The optical energy gap decreases by the addition of TiO2 nanoparticles. The mechanical properties such as tensile strength and Young’s modulus are enhanced by the addition of Titanium dioxide (TiO2) nanoparticles. The Fluorescence studies indicate that photoluminescence intensity is maximum for 4 wt% doping concentration of TiO2. The AFM analysis provides information about the surface roughness of the polymer film. The dielectric plot shows that the dielectric constant increases up to 12 wt% doping of TiO2, a further increase in the doping concentration results in the reduction of dielectric constant. The dielectric constant decreases with an increase in the frequency for all the films. The above properties show TiO2 doped PVA/PVP nanocomposite films are a prominent material for potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nichoa ME, García-Escobar CH, Arenas MC, Altuzar-Coelloc P, Cruz-Silvaa R, Güizado-Rodríguez M (2011) Influence of P3HT concentration on morphological,optical and electrical properties of P3HT/PS and P3HT/PMMA binary blends. Mater Sci Eng B 176:1393–1400

    Article  Google Scholar 

  2. Liao CZ, Bao SP, Tjong SC (2011) Microstructure and fracture behavior of Maleated high-density polyethylene/silicon carbide nanocomposite toughened with poly(styreneethylene-butylene-styrene) triblock copolymer. Adv Polym Technol 30:322–333

    Article  CAS  Google Scholar 

  3. Su F-H, Zhang Z-Z (2009) Friction and Wear behavior of glass fabric /phenolic resin composites with surface-modified glass fabric. Appl Polym Sci 112:594–601

    Article  CAS  Google Scholar 

  4. Ramesan MT, Varghese M, P J, Periyat P (2018) Silver-doped zinc oxide as a nanofiller for development of poly(vinyl alcohol)/poly(vinyl pyrrolidone) blend nanocomposites. Adv Polym Technol 37(1):137–143. https://doi.org/10.1002/adv.21650

    Article  CAS  Google Scholar 

  5. Mano V, Silva MESR e, Barbani N, Giusti P (2004) Binary blends based on poly(N-isopropylacrylamide): miscibility studies with PVA, PVP, and PAA. Appl Polym Sci 92:743–748

    Article  CAS  Google Scholar 

  6. Wang N, Yu J, Ma X (2008) Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polym Compos 29:551–559

    Article  CAS  Google Scholar 

  7. Wang X, Bazuin CG, Pellerin C (2015) Effect of small molecule hydrogen-bond crosslinker and solvent power on the electro spinnability of poly(4-vinyl pyridine). Polymer 57:62–69

    Article  CAS  Google Scholar 

  8. Nurfatimah B, Ching YC, Luqma CA, Chantara TR, Nor A (2015) Thermal and dynamic mechanical properties of grafted kenaf filled poly(vinyl chloride/ethylene vinyl acetate composites). Mater Des 65:204–211

    Article  Google Scholar 

  9. Ma R, Xiong D, Miao F, Zhang J, Peng Y (2010) Friction properties of novel PVP/PVA blend hydrogels as artificial cartilage. J Biomed Mater Res Part A 93:1016–1019

    Google Scholar 

  10. Ma R, Xiong D, Miao F, Zhang J, Peng Y (2009) Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng 29:1979–1983

    Article  CAS  Google Scholar 

  11. Mallakpour S, Jarahiyan A (2017) Enhancement of poly(vinyl alcohol)–poly(vinyl Pyrrolidone) blend properties using modified copper (II) oxide and ultrasonic irradiation. Polym-Plast Technol Eng 56(10):1059–1067

    Article  CAS  Google Scholar 

  12. Kubo S, Kadla JF (2003) The formation of strong intermolecular interactions in immiscible blends of poly(vinyl alcohol) (PVA) and lignin. Biomacromolecules 4:561–567

    Article  CAS  Google Scholar 

  13. Ben Doudou B, Vivet A, Chen J, Laachachi A, Falher T, Poilâne C (2014) Hybrid carbon nanotube—silica/ polyvinyl alcohol nanocomposites films: preparation and characterisation. J Polym Res 21:420. https://doi.org/10.1007/s10965-014-0420-9

    Article  CAS  Google Scholar 

  14. Baraker BM, Lobo B (2016) Experimental study of PVA–PVP blend films doped with cadmium chloride monohydrate. Indian J Pure Appl Phys 54:634–640

    Google Scholar 

  15. Abdelrazek EM, Elashmawi IS, El-khodary A, Yassin A (2010) Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr Appl Phys 10:607–613

    Article  Google Scholar 

  16. Rathod SG, Bhajantri RF, Ravindrachary V, Sheela T, Pujari PK, Naik J, Poojary B (2015) Pressure sensitive dielectric properties of TiO2 doped PVA/CN-li nanocomposite. J Polym Res 22:6. https://doi.org/10.1007/s10965-015-0657-y

    Article  CAS  Google Scholar 

  17. Goswami A, Bajpai AK, Bajpai J, Sinha BK (2017) Designing vanadiumpentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior. Polym Bull 75:781–807. https://doi.org/10.1007/s00289-017-2067-2

    Article  CAS  Google Scholar 

  18. Wang YJ, Kim D (2007) Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes. Electrochim Acta 52:3181–3189

    Article  CAS  Google Scholar 

  19. Kiesow A, Morris JE, Radehaus C, Heillman A (2003) Behavior switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  CAS  Google Scholar 

  20. El-Ahdal MA (2000) Radiation effect on the molecular structure of dyed poly(vinyl alcohol). Int J Polym Mater 48(1):17–28

    Article  CAS  Google Scholar 

  21. Abd El-Kader KAM, Abdel Hamied SF (2002) Preparation of poly(vinyl alcohol) films with promising physical properties in comparison with commercial polyethylene film. J Appl Polym Sci 86(5):1219–1226

    Article  Google Scholar 

  22. N.B. Rithin Kumar, Vincent Crasta, and B. M. Praveen(2014) Advancement in Microstructural, Optical, and Mechanical Properties of PVA (Mowiol 10-98) Doped by ZnO Nanoparticles, Hindawi Publishing Corporation Physics https://doi.org/10.1155/2014/742378

    Article  Google Scholar 

  23. Bhajantri RF, Ravindrachary V, Poojary B, Ismayil AH, Crasta V (2009) Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polym Eng Sci 49:903–909. https://doi.org/10.1002/pen.21341

    Article  CAS  Google Scholar 

  24. Mott NF, Devis EA (1979) Electronic process in non-crystalline materials2nd edn. Oxford University Press, Oxford

    Google Scholar 

  25. Tauc J (1972) Optical properties of solids. In: Abeles F (ed) Optical Properties of Solid, North-Holland, Amsterdam, p 277

  26. Abdullah OG, Tahir DA, Ahmad SS, Ahmad HT (2013) Optical properties of PVA:CdCl2.H2O polymer electrolytes. IOSR-JAP 4:52–57

    Article  Google Scholar 

  27. Sunil G, Rathod RF (2016) Bhajantri , V. Ravindrachary , Jagadish Naik , D. J. MadhuKumar high mechanical and pressure sensitive dielectric properties of GrapheneOxide doped PVA nanocomposites. RSC Adv 6:77977–77986. https://doi.org/10.1039/C6RA16026C

    Article  CAS  Google Scholar 

  28. Khadheer pasha SK, deshmukh k, ahamed m B, Chidambaram k, Mohanapriya m K, raj n A n (2015) Investigation of Microstructure, Morphology, Mechanical, and Dielectric Properties of PVA/PbO Nanocomposites. Adv Polym Technol 36:352–361. https://doi.org/10.1002/adv.21616

    Article  CAS  Google Scholar 

  29. Bhat TS, Devan RS, Mali SS, Kamble AS, Pawar SA, Kim IY, Ma YR, Hong CK, Kim JH, Patil PS (2014). J Mater Sci Mater Electron 25:4501–4511

    Article  CAS  Google Scholar 

  30. Srivastava S, Kumar S, Singh VN, Singh M, Vijay YK (2011) Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing. Int J Hydrog Energy 36:6343–6355

    Article  CAS  Google Scholar 

  31. Zidan HM (2003) Structural properties of CrF3, and MnCl2 -filled poly (vinyl alcohol) films. J Appl Polym Sci 88:1115–1120

    Article  CAS  Google Scholar 

  32. Baraker BM, Lobo B (2017) Spectroscopic analysis ofCdCl2 doped PVA–PVP blend films. Can J Phys 95(8):738–747. https://doi.org/10.1139/cjp-2016-0848

    Article  CAS  Google Scholar 

  33. M. Cuba, G. Muralidharan N (2014) Enhanced luminescence properties of hybrid Alq3/ZnO (organic/inorganic) composite films. J Lumin 156:1–7

    Article  CAS  Google Scholar 

  34. Kumar N.B R, Crasta V, Praveen BM, Kumar M (2015) Studieson structural, optical and mechanical properties of MWCNTs and ZnO nanoparticlesdoped PVA nanocomposites. Nanotechnology Rev 4(5):457–467. https://doi.org/10.1515/ntrev-2015-0020

    Article  CAS  Google Scholar 

  35. Khan M, Khan AN, Saboor A, Gul IH (2017) Investigating mechanical, dielectric, and electromagnetic interference shielding properties of polymer blends and three component hybrid composites based on polyvinyl alcohol, polyaniline, and few layer grapheme. Polym Compos 39:3686–3695. https://doi.org/10.1002/pc.24398

    Article  CAS  Google Scholar 

  36. Ravati S, Favis BD (2010) Low percolation threshold conductive device derivedfrom a five-component polymer blend. Polymer 51:3669–3684

    Article  CAS  Google Scholar 

  37. Al-Saleh MH, Sundararaj U (2008) An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Compos Part A 39:284–293

    Article  Google Scholar 

  38. Mao C, Zhu Y, Jiang W (2012) Design of Electrical Conductive Composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl Mater Interfaces 4:5281–5286

    Article  CAS  Google Scholar 

  39. Zhu L (2014) Exploring strategies for high dielectric constant and low loss. Polymer dielectrics. J Phys Chem Lett 5:3677–3687

    Article  CAS  Google Scholar 

  40. Mahendia S, Tomar AK, Kumar S (2011) Nano-ag doping induced changes inoptical and electrical behaviour of PVA films. Mater Sci Eng B 176:530–534

    Article  CAS  Google Scholar 

  41. Rithin Kumar NB, Crasta V, Praveen BM (2016) Dielectric and electric conductivity studies of PVA (Mowiol 10-98) doped with MWCNTs and WO3 nanocomposites films. Mater Res Express 3:055012

    Article  Google Scholar 

  42. Mahendia S, Tomara AK, Kumara S (2010) Electrical conductivity and dielectric spectroscopic studies of PVA–ag nanocomposite films. J Alloys Compd 508:406–411

    Article  CAS  Google Scholar 

  43. Bhajanti RF, Ravindrachary V, Harisha A, Ranganathaiah G, Kumaraswamy GN (2007) Effect of barium chloride doping on PVA microstructure: positron annihilation study. Appl Phys A Mater Sci Process 87:797–805

    Article  Google Scholar 

  44. Devi CU, Sharma AK, Rao VVRN (2002) Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater.Lett. 56:167–174

    Article  CAS  Google Scholar 

  45. Su S-J, Kuramoto N (2000) Processable polyanilinetitanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Synth Met 114:147–153

    Article  CAS  Google Scholar 

  46. Rao V, Ashokan PV, Shridhar MH (2000) Studies of dielectric relaxation and a.C. Conductivity in cellulose acetate hydrogen phthalate–poly(methyl methacrylate) blends. Mater Sci Eng A 281:213–220

    Article  Google Scholar 

  47. Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  CAS  Google Scholar 

  48. Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2018) Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth Met 158:251–258

    Article  Google Scholar 

  49. Stamate MD (2000) Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system. Thin Solid Films 372:246–249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Crasta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh, K., Crasta, V., Rithin Kumar, N.B. et al. Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J Polym Res 26, 99 (2019). https://doi.org/10.1007/s10965-019-1762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1762-0

Keywords

Navigation