Skip to main content
Log in

Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nanodielectrics based on metal oxide nanoparticles (NPs) exhibit significant improvement in dielectric performances. This study was carried out to examine the dielectric properties of Poly vinyl chloride (PVC) with the introduction of zinc oxide (ZnO) NPs synthesized by simple sol gel method. The microstructure and surface morphology of the synthesized ZnO NPs were characterized by X-ray diffraction (XRD) and field emission scanning microscopy (FE-SEM). The formation of the wurtzite-type ZnO was verified from XRD with average crystallite sizes around 35 nm. PVC/ZnO-NPs nanocomposites were prepared by the solution-cast technique with two different procedures of NPs addition. The dielectric properties of PVC/ZnO nanocomposites were studied by measuring the DC dielectric strength with constant 1 kV/s ramp and the dielectric response as function of frequency from 500 Hz to 1 MHz. A significant enhancement in breakdown strength has been observed with addition of ZnO NPs. The breakdown strength values reached up to 45 % (for PVC/0.14 vol% ZnO) more than obtained for the pristine PVC sample. The effect of dispersibility of NPs due to the used procedures of addition on the DC dielectric strength was studied and confirmed by FE-SEM. The dependency of the real part of permittivity (ε ) on filler concentration was observed and confirmed the obtained results from DC dielectric strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tanaka T, Montanari GC, Mulhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation- perspectives for processing technologies, material characterization and future applications. IEEE Trans Dielectr Electr Insul 11:763–784

    Article  CAS  Google Scholar 

  2. Mansour SA (2013) Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques. J Therm Anal Calorim 112:579–583

    Article  CAS  Google Scholar 

  3. Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N (2010) Dielectric properties of epoxy/alumina nanocomposite influenced by control of micrometric agglomerates. IEEE Trans Dielectr Electr Insul 17:662–670

    Article  CAS  Google Scholar 

  4. Tian F, Lei Q, Wang X, Wang Y (2012) Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 19:763–769

    Article  CAS  Google Scholar 

  5. Velayutham TS, Abd Majid WH, Gan WC, Zak A, Gan SN (2012) Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J Appl Phys 112:054106

    Article  Google Scholar 

  6. Singha S, Thomas MJ (2009) Influence of filler loading on dielectric properties of Epoxy-ZnO nanocomposites. IEEE Trans Dielectr Electr Insul 16:531–542

    Article  CAS  Google Scholar 

  7. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12:914–927

    Article  CAS  Google Scholar 

  8. Tanaka T, Matsunawa A, Ohki Y, Kozako M, Kohtoh M, Okabe S (2006) Treeing phenomenon in epoxy/alumina nanocomposite and interpretation by a multi-core model. IEEJ Trans Fund Mater 126:1128–1135

    Article  Google Scholar 

  9. Jonscher AK, Lacoste R (1984) On a cumulative model of dielectric breakdown in solids. IEEE Trans Electr Insul 19:567–577

    Article  Google Scholar 

  10. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98

    Google Scholar 

  11. Langford JI, Wilson AJC (1987) Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J Appl Cryst 11:102

    Article  Google Scholar 

  12. Varlec A, Mansour SA, Di Luccio T, Borriello C, Bruno A, Jelenc J, Visic B, Remskar X (2013) Microscopic and spectroscopic investigation of MoS2 nanotubes/P3HT nanocomposites. Phys Status Solidi A 210:2335–2340

    Article  CAS  Google Scholar 

  13. Theodosiou K, Vitellas I, Gialas I, Agoris DP (2004) Polymer films degradation and breakdown in high voltage AC fields. J Electr Eng 55:225–231

    CAS  Google Scholar 

  14. Shah KS, Jain RC, Shrinet V, Singh AK, Bharambe DP (2009) High density polyethylene (HDPE) clay nanocomposite for dielectric applications. IEEE Trans Dielectr Electr Insul 16:853–861

    Article  CAS  Google Scholar 

  15. Danikas MG, Tanaka T (2009) Nanocomposites―A Review of electrical Treeing and breakdown. IEEE Electr Insul Mag 25:19–25

    Article  Google Scholar 

  16. Mansour SA, Yahia IS, Yakuphanoglu F (2010) The electrical conductivity and dielectric properties of C.I. Basic Violet 10. Dyes Pigments 87:144–148

    Article  CAS  Google Scholar 

  17. Mansour SA, Yahia IS, Sakr GB (2010) Electrical conductivity and dielectric relaxation behavior of fluorescein sodium salt (FSS). Solid State Commun 150:1386–1391

    Article  CAS  Google Scholar 

  18. Couderc H, David E (2014) Study of water diffusion in PE-SiO 2 nanocomposites by dielectric spectroscopy. Trans Electr Electron Mater 15:291–296

    Article  Google Scholar 

  19. David E, Sami A, Fréchette MF (2011) Dielectric response of polyethylene loaded with nanoparticules of Si02. Proc Int’l Conf Insulated Power Cables JiCable, paper C.5.5

  20. Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Aytug T, Sathyamurthy S, More KL, Li J, Goyal A (2007) Electrical properties of epoxy resin based nano-composites. Nanotechnology 18:025703 (1)-(6)

    Article  Google Scholar 

  21. Ciuprina F, Plesa I, Notingher PV, Tudorache T, Panaitescu D (2008) Dielectric properties of nanodielectrics with inorganic fillers. Proc of the Annual Report Conference on Electrical Insulation Dielectric Phenomena:682–685

  22. Singha S, Thomas MJ (2008) Dielectric properties of epoxy resin nanocomposites. IEEE Trans Dielectr Electr Insul 15:12–23

    Article  CAS  Google Scholar 

  23. Nelson JK, Hu Y (2005) Nanocomposite dielectrics—properties and implications. J Phys D 38:213–222

    Article  CAS  Google Scholar 

  24. Bistac S, Vallat MF, Schultz J (1999) Study of ethylene copolymers films by dielectric spectroscopy: influence of the polymer thickness on the glass-transition temperature. Prog Org Coat 37:49–56

    Article  CAS  Google Scholar 

  25. Roy M, Nelson JK, Reed CW, MacCrone RK, Keefe RJ, Zenger W, Schadler LS (2005) Polymer nanocomposite dielectrics - the role of the interface. IEEE Trans Dielectr Electr Insul 12:629–642

    Article  CAS  Google Scholar 

  26. Huang X, Xie L, Yang K, Wu C, Jiang P, Li S, Wu S, Tatsumi KI, Tanaka T (2014) Role of interface in highly filled epoxy/BaTiO3 nanocomposites. part I-Correlation between nanoparticle surface chemistry and nanocomposite dielectric property. IEEE Trans Dielectr Electr Insul 21:467–479

    Article  CAS  Google Scholar 

  27. Huang X, Zheng Y, Jiang P, Yin Y (2010) Influence of nanoparticle surface treatment on the electrical properties of cycloaliphatic epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 17:635–643

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, S.A., Elsad, R.A. & Izzularab, M.A. Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23, 85 (2016). https://doi.org/10.1007/s10965-016-0978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0978-5

Keywords

Navigation