Skip to main content
Log in

Characterization of a type I pullulanase from Anoxybacillus sp. SK3-4 reveals an unusual substrate hydrolysis

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0–6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26–72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362–370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah M, French D (1970) Substrate specificity of pullulanase. Arch Biochem Biophys 137:483–493

    Article  CAS  PubMed  Google Scholar 

  • Abdullah M, Catley BJ, Lee EYC, Robyt J, Wallenfels K, Whelan WJ (1966) The mechanism of carbohydrase action. 11. Pullulanase, an enzyme specific for the hydrolysis of alpha-1 → 6-bonds in amylaceous oligo- and polysaccharides. Cereal Chem 43:111–118

    CAS  Google Scholar 

  • Ayadi DZ, Ali MB, Jemli S, Mabrouk SB, Mezghani M, Messaoud EB, Bejar S (2008) Heterologous expression, secretion and characterization of the Geobacillus thermoleovorans US105 type I pullulanase. Appl Microbiol Biotechnol 78:473–481

    Article  Google Scholar 

  • Belduz AO, Canakci S, Chan K-G, Kahar UM, Chan CS, Yaakop AS, Goh KM (2015) Genome sequence of Anoxybacillus ayderensis AB04T isolated from the ayder hot spring in Turkey. Stand Genomic Sci 10:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertoft E, Piyachomkwan K, Chatakanonda P, Sriroth K (2008) Internal unit chain composition in amylopectins. Carbohydr Polym 74:527–543

    Article  CAS  Google Scholar 

  • Bertoldo C, Duffner F, Jorgensen P, Antranikian G (1999) Pullulanase type I from Fervidobacterium pennavorans Ven5: cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 65:2084–2091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoldo C, Armbrecht M, Becker F, Schäfer T, Antranikian G, Liebl W (2004) Cloning, sequencing, and characterization of a heat- and alkali-stable type I pullulanase from Anaerobranca gottschalkii. Appl Environ Microbiol 70:3407–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai YY, Kahar UM, Salleh MM, Illias RM, Goh KM (2012a) Isolation and characterization of pullulan-degrading Anoxybacillus species isolated from Malaysian hot springs. Environ Technol 33:1231–1238

    Article  CAS  PubMed  Google Scholar 

  • Chai YY, Rahman RNZRA, Illias RM, Goh KM (2012b) Cloning and characterisation of two new thermostable and alkalitolerant α-amylases from the Anoxybacillus species that produce high levels of maltose. J Ind Microbiol Biotechnol 39:731–741

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Chan K-G, Tay Y-L, Chua Y-H, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177

    PubMed  PubMed Central  Google Scholar 

  • Cheng K-C, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44

    Article  CAS  PubMed  Google Scholar 

  • Christiansen C, Abou Hachem M, Janeček Š, Viksø-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20—diversity, structure, and function. FEBS J 276:5006–5029

    Article  CAS  PubMed  Google Scholar 

  • Domań-Pytka M, Bardowski J (2004) Pullulan degrading enzymes of bacterial origin. Crit Rev Microbiol 30:107–121

    Article  PubMed  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucl Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Furegon L, Curioni A, Peruffo ADB (1994) Direct detection of pullulanase activity in electrophoretic polyacrylamide gels. Anal Biochem 221:200–201

    Article  CAS  PubMed  Google Scholar 

  • Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Illias RM, Chan K-G (2013) Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 97:1475–1488

    Article  CAS  PubMed  Google Scholar 

  • Goh KM, Gan HM, Chan K-G, Chan GF, Shahar S, Chong CS, Kahar UM, Chai KP (2014) Analysis of Anoxybacillus genomes from the aspects of lifestyle adaptations, prophage diversity, and carbohydrate metabolism. PLoS one 9:e90549

    Article  PubMed  PubMed Central  Google Scholar 

  • Hii SL, Tan JS, Ling TC, Ariff AB (2012) Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res 2012:921362

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahar UM, Chan K-G, Salleh MM, Hii SM, Goh KM (2013) A high molecular-mass Anoxybacillus sp. SK3-4 amylopullulanase: characterization and its relationship in carbohydrate utilization. Int J Mol Sci 14:11302–11318

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang J, Park K-M, Choi K-H, Park C-S, Kim G-E, Kim D, Cha J (2011) Molecular cloning and biochemical characterization of a heat-stable type I pullulanase from Thermotoga neapolitana. Enzym Microb Technol 48:260–266

    Article  CAS  Google Scholar 

  • Katsuya Y, Mezaki Y, Kubota M, Matsuura Y (1998) Three-dimensional structure of Pseudomonas isoamylase at 2.2 Å resolution. J Mol Biol 281:885–897

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2010) Analysis of the key active subsites of glycoside hydrolase 13 family members. Carbohydr Res 345:893–898

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucl Acids Res 43:D257–D260

    Article  PubMed  Google Scholar 

  • Li Y, Zhang L, Niu D, Wang Z, Shi G (2012) Cloning, expression, characterization, and biocatalytic investigation of a novel bacilli thermostable type I pullulanase from Bacillus sp. CICIM 263. J Agric Food Chem 60:11164–11172

    Article  CAS  PubMed  Google Scholar 

  • Lim YL, Chan K-G, Ee R, Belduz AO, Canakci S, Kahar UM, Yaakop AS, Goh KM (2015) Complete genome of the potential thermozyme producer Anoxybacillus gonensis G2T isolated from the Gönen hot springs in Turkey. J Biotechnol 212:65–66

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Malle D, Itoh T, Hashimoto W, Murata K, Utsumi S, Mikami B (2006) Overexpression, purification and preliminary X-ray analysis of pullulanase from Bacillus subtilis strain 168. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:381–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami B, Iwamoto H, Malle D, Yoon H-J, Demirkan-Sarikaya E, Mezaki Y, Katsuya Y (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 359:690–707

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Niehaus F, Peters A, Groudieva T, Antranikian G (2000) Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans. FEMS Microbiol Lett 190:223–229

    Article  CAS  PubMed  Google Scholar 

  • Nisha M, Satyanarayana T (2015) The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Appl Microbiol Biotechnol 99:5461–5474

    Article  CAS  PubMed  Google Scholar 

  • Park H-S, Park J-T, Kang H-K, Cha H, Kim D-S, Kim J-W, Park K-H (2007) TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-α-glucanotransferase activities. Biosci Biotechnol Biochem 71:1348–1352

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Peng Q, Yan J, Wang H, Ding H, Shi B (2015) Gene cloning and enzymatic characterization of alkali-tolerant type I pullulanase from Exiguobacterium acetylicum. Lett Appl Microbiol 60:52–59

    Article  CAS  PubMed  Google Scholar 

  • Ranjani V, Janeček Š, Chai KP, Shahir S, Rahman RNZRA, Chan K-G, Goh KM (2014) Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase. Sci Rep 4:5850

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li ZY, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci U S A 103:3546–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saw J, Mountain B, Feng L, Omelchenko M, Hou S, Saito J, Stott M, Li D, Zhao G, Wu J, Galperin M, Koonin E, Makarova K, Wolf Y, Rigden D, Dunfield P, Wang L, Alam M (2008) Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biol 9:R161

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaojing S, Fuping L, Nan J, Li L, Jianyong X, Muchen C, Hui S (2011) Study of a novel thermostable pullulanase producing strain Anoxybacillus sp. LM14-2. Biotechnol Bull 9:136–141

    Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Svendsen A, Andersen C, Borchert T (2001) Pullulanase variants and methods for preparing such variants with predetermined properties. PCT Patent application WO/2001/051620

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39:151–165

    Article  CAS  Google Scholar 

  • Turkenburg JP, Brzozowski AM, Svendsen A, Borchert TV, Davies GJ, Wilson KS (2009) Structure of a pullulanase from Bacillus acidopullulyticus. Proteins 76:516–519

    Article  CAS  PubMed  Google Scholar 

  • Urbieta MS, Donati ER, Chan K-G, Shahar S, Sin LL, Goh KM (2015) Thermophiles in the genomic era: biodiversity, science, and applications. Biotechnol Adv 33:633–647

    Article  CAS  PubMed  Google Scholar 

  • van der Maarel M, van der Veen B, Uitdehaag J, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  • van Soest J, Vliegenthart J (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15:208–213

    Article  PubMed  Google Scholar 

  • Wei W, Ma J, Guo S, Wei D-Z (2014) A type I pullulanase of Bacillus cereus Nws-bc5 screening from stinky tofu brine: functional expression in Escherichia coli and Bacillus subtilis and enzyme characterization. Process Biochem 49:1893–1902

    Article  CAS  Google Scholar 

  • Xu J, Ren F, Huang C-H, Zheng Y, Zhen J, Sun H, Ko T-P, He M, Chen C-C, Chan H-C, Guo R-T, Song H, Ma Y (2014) Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11. Proteins 82:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y-HP (2009) A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction? Energy Environ Sci 2:272–282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Malaya via High Impact Research Grants (UM.C/625/1/HIR/MOHE/CHAN/01 [Grant No. A-000001-50001] and UM.C/625/1/HIR/MOHE/CHAN/14/1 [Grant No. H-50001-A000027]) awarded to Kok-Gan Chan. Kian Mau Goh is grateful for funding received from Universiti Teknologi Malaysia GUP (Grant 09H98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kian Mau Goh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahar, U.M., Ng, C.L., Chan, KG. et al. Characterization of a type I pullulanase from Anoxybacillus sp. SK3-4 reveals an unusual substrate hydrolysis. Appl Microbiol Biotechnol 100, 6291–6307 (2016). https://doi.org/10.1007/s00253-016-7451-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7451-6

Keywords

Navigation