Skip to main content

Advertisement

Log in

Immobilization of cells and enzymes to LentiKats®

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biocatalyst immobilization is one of the techniques, which can improve whole cells or enzyme applications. This method, based on the fixation of the biocatalyst into or onto various materials, may increase robustness of the biocatalyst, allows its reuse, or improves the product yield. In recent decades, a number of immobilization techniques have been developed. They can be divided according to the used natural or synthetic material and principle of biocatalyst fixation in the particle. One option, based on the entrapment of cells or enzymes into a synthetic polyvinyl alcohol lens with original shape, is LentiKats® immobilization. This review describes the preparation principle of these particles and summarizes existing successful LentiKats® immobilizations. In addition, examples are compared with other immobilization techniques or free biocatalysts, pointing to the advantages and disadvantages of LentiKats®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alagöz D, Tükel SS, Yildirim D (2014) Purification, immobilization and characterization of (R)-hydroxynitrile lyase from Prunus amygdalus turcomanica seeds and their applicability for synthesis of enantiopure cyanohydrins. J Mol Catal B-Enzym 101:40–46. doi:10.1016/j.molcatb.2013.12.019

    Article  Google Scholar 

  • Altunaş G, Ö;zҫelik F (2013) Ethanol production from starch by co-immobilized Amyloglucosidase-Zymomonas Mobilis cells in a continously-stirred bioreactor. Biotechnol Biotechnol Equip 27(1):3506–3512. doi:10.5504/BBEQ.2012.0111

    Article  Google Scholar 

  • Alvarenga AE, Amoroso MJ, Illanes A, Castro GR (2014) Cross-linked α-l-rhamnosidase aggregates with potential application in food industry. Eur Food Res Technol 238:797–801. doi:10.1007/s00217-014-2157-4

    Article  CAS  Google Scholar 

  • Bandaru VVR, Somalanka SR, Mendu DR, Madicherla NR, Chityala A (2006) Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology. Enzym Microb Technol 38:209–214. doi:10.1016/j.enzmictec.2005.06.002

    Article  CAS  Google Scholar 

  • Bartram J, Carmichael WW, Chorus I, Jones G, Skulberg OM (1999) Chapter 1. Introduction. In: Chorus I, Bartman J (eds) Toxic cyanobacteria in water: a guide to their public health consequences monitoring and management. St Edmunsbury Press, London, pp 12–24

    Google Scholar 

  • Bernardino S, Estrela N, Ochoa-Mendez V, Fernandes P, Fonseca LP (2011) Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties. J Sol-Gel Sci Technol 58(2):545–556. doi:10.1007/s10971-011-2426-7

    Article  CAS  Google Scholar 

  • Börner RA, Zaushitsyna O, Berillo D, Scaccia N, Mattiasson B, Kirsebom H (2014) Immobilization of Clostridium acetobutylicum DSM 792 as macroporous aggregates through cryogelation for butanol production. Process Biochem 49:10–18. doi:10.1016/j.procbio.2013.09.027

    Article  Google Scholar 

  • Boušková A (2010) Solve Your Nitrogen Problems with LentiKats® technology. Pollution Solution – technical journal Feb/March, pp 4-5

  • Boušková A, Mrákota J, Stloukal R, Trögl J, Pilařová V, Křiklavová L, Lederer T (2011) Three examples of nitrogen removal from industrial wastewater using Lentikats Biotechnology. Desalination 280:191–196. doi:10.1016/j.desal.2011.07.001

    Article  Google Scholar 

  • Brandenberger H, Widmer F (1998) A new multinozzle encapsulation immobilization system to produce uniform beads of alginate. J Biotechnol 63:73–80. doi:10.1016/S0168-1656(98)00077-7

    Article  CAS  Google Scholar 

  • Bučko M, Mislovičová D, Nahálka J, Vikartovská A, Šefčovičová J, Katrlík J, Tkáč J, Gemeiner P, Lacík I, Štefuca V, Polakovič M, Rosenberg M, Rebroš M, Šmogrovičová D, Švitel J (2012) Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chem Pap 66:983–998. doi:10.2478/s11696-012-0226-3

    Google Scholar 

  • Carmichael WW (1992) Cyanobacteria secondary metabolites-cyanotoxins. J Appl Bacteriol 72:445–459. doi:10.1111/j.1365-2672.1992.tb01858.x

    Article  CAS  PubMed  Google Scholar 

  • Carvallo L, Carrera J, Chamy R (2009) Nitrifying activity monitoring and kinetic parameters determination in a biofilm airlift reactor by respirometry. Biotechnol Lett 24:2063–2066. doi:10.1023/A:1021375523879

  • Cattorini S, Marques MPC, Carvalho F, Chheub V, Cabral JMS, Fernandes P (2009) Lentikat®-based biocatalysts effective tools for inulin hydrolysis. Chem Biol Eng 23:429–434

    CAS  Google Scholar 

  • Čechovská L, Mrátkota J, Boušková A, Stloukal R (2009) Intenzifikace čistíren pomocí biotechnologie Lentikats® - provozní výsledky. Ekotechnika pp 38-40

  • Chen Y, Liu Q, Zhou T, Li B, Yao S, Li A, Wu J, Ying H (2013) Ethanol production by repeated batch and continuous fermentations by Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. J Microbiol Biotechnol 23(4):511–517. doi:10.4014/jmb.1209.09066

  • Cheryan M, Mehaia MA (1984) Ethanol production in a membrane recycle reactor. Conversion of glucose using Saccharomyces cerevisiae. Process Biochem 19:204–208

    CAS  Google Scholar 

  • Chhabra M, Mishra S, Sreekrishnan TR (2015) Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27. J Environ Health Sci Eng 13:38–47. doi:10.1186/s40201-015-0192-0

    Article  PubMed Central  PubMed  Google Scholar 

  • Cunha M, Converti A, Santos JC, Silvo S (2006) Yeast immobilization in LentiKats®: a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microb Biotechnol 22:65–72. doi:10.1007/s11274-005-6812-6

    Article  Google Scholar 

  • Czichocki G, Dautzenberg H, Capan E, Vorlop KD (2001) New and effective entrapment of polyelectrolyte-enzyme-complexes in LentiKats. Biotechnol Lett 23:1303–1307

    Article  CAS  Google Scholar 

  • Dolejš I, Krasňan V, Stloukal R, Rosenberg M, Rebroš M (2014a) Butanol production by immobilized Clostridium acetobutylicum in repeated batch, fed-batch and continuous modes of fermentation. Bioresour Technol 169:723–730. doi:10.1016/j.biortech.2014.07.039

    Article  PubMed  Google Scholar 

  • Dolejš I, Rebroš M, Rosenberg M (2014b) Immobilisation of Clostridium spp. for production of solvents and organic acids. Chem Pap 68:1–14. doi:10.2478/s11696-013-0414-9

    Article  Google Scholar 

  • Dong Y, Zhang Z, Jin Y, Lu J, Cheng X, Li J, Deng Y, Feng Y, Chen D (2012) Nitrification characteristics of nitrobacteria immobilized in waterborne polyuretane in wastewater of corn-based ethanol fuel production. J Environ Sci 24(6):999–1005. doi:10.1016/S1001-0742(11)60893-0

    Article  CAS  Google Scholar 

  • Durieux A, Nicolay X, Simon JP (2000) Continuous malolactic fermentation by Oenococcus Oeni entrapped in LentiKats. Biotechnol Lett 22:1679–1684

    Article  CAS  Google Scholar 

  • Eldin MSM, Seuror EI, Nasr MA, Tieama HA (2011) Affinity covalent immobilization of glucoamylase onto –benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization. Appl Biochem Biotechnol 164:45–57. doi:10.1007/s12010-010-9113-y

    Article  CAS  PubMed  Google Scholar 

  • Eldin MSM, El-Aassar MR, El-Zatahry AA, Al-Sabah MMB (2013) Covalent immobilization of β-galactosidase onto amino-functionalized polyvinyl chloride microspheres: enzyme immobilization and characterization. Adv Polym Tech 33(1):21379–21390. doi:10.1002/adv.21379

    Google Scholar 

  • Fang F, Ni BJ, Li XY, Sheng GP, Yu HQ (2009) Kinetic analysis on the two-step processes of AOB and NOB in aerobic nitrifying granules. Appl Microbiol Biotechnol 83:1159–1169. doi:10.1007/s00253-009-2011-y

  • Fernandéz MC, López C, Álvaro G, Santín JL (2012a) Immobilized L-aspartate ammonia-lyase from Bacillus sp. YM55-1 as biocatalyst for highly concentrated L-aspartate synthesis. Bioprocess Biosyst Eng 35:1437–1444. doi:10.1007/s00449-012-0732-2

    Article  Google Scholar 

  • Fernandéz MC, López C, Álvaro G, Santín JL (2012b) L-Phenylalanine synthesis catalyzed by immobilized aspartate aminotransferase. Biochem Eng J 63:15–21. doi:10.1016/j.bej.2012.01.009

    Article  Google Scholar 

  • Fernandéz MC, Neto W, López C, Álvaro G, Tufvesson P, Woodlez JM (2012c) Immobilization of Escherichia coli containing ω-transaminase activity in Lentikats®. Biotechnol Prog 0:1–6. doi:10.1002/btpr.01538

    Google Scholar 

  • Gröger H, Capan E, Barthuber A, Vorlop KD (2001) Asymmetric synthesis of an (R)-Cyanohydrin using enzymes entrapped in lens-shaped gels. Org Lett 3:1969–1972. doi:10.1021/ol015920g

    Article  PubMed  Google Scholar 

  • Grosová Z, Rosenberg M, Rebroš M, Šipőcz M, Sedláčková B (2008) Entrapment of β-galactosidase in polyvinylalcohol hydrogel. Biotechnol Lett 30:763–767. doi:10.1007/s10529-007-9606-0

    Article  PubMed  Google Scholar 

  • Grosová Z, Rosenberg M, Gdovin M, Sláviková L, Rebroš M (2009) Production of D-galactose using β-galactosidase and Saccharomyces cerevisiae entrapped in poly(vinylalcohol) hydrogel. Food Chem 116:96–100. doi:10.1016/j.foodchem.2009.02.011

    Article  Google Scholar 

  • Huang WC, Ramey DE, Yang ST (2004) Continous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed reactor. Appl Biochem Biotechnol 113:887–898. doi:10.1385/ABAB:115:1-3:0887

    Article  PubMed  Google Scholar 

  • Hucík M, Bučko M, Gemeiner P, Štefuca V, Vikartovská A, Mihovilovič MD, Rudroff F, Iqbal N, Chorvát D, Lacík I (2010) Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer–Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnol Lett 32:675–680. doi:10.1007/s10529-010-0203-2

  • Isaka K, Itokawa H, Kimura Y, Noto K, Murakami T (2011) Novel autotrophic nitrogen removal system using gel entrapment technology. Biosour Technol 102(17):7720–7726. doi:10.1016/j.biortech.2011.06.001

    Article  CAS  Google Scholar 

  • Isaka K, Kimura Y, Osaka T, Tsuneda S (2012) High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria. Water Res 46(16):4941–4948. doi:10.1016/j.watres.2012.05.050

    Article  CAS  PubMed  Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology (2nd ed., the “Gold Book”). In: McNaught AD, Wilkinson A  (eds). Blackwell Scientific Publications, Oxford, pp 764

  • Jahnz U, Wittlich P, Prüsse U, Vorlop KD (2001) New matrices and bioencapsulation processes. Focus Biotechnol 4:293–307

    Article  CAS  Google Scholar 

  • Jekel M, Buhr A, Willke T, Vorlop KD (1998) Immobilization of bocatalyst in LentiKats. Chem Eng Technol 21:275–278

    Article  CAS  Google Scholar 

  • Kapagiannidis AG, Vaiopoulou E, Aivasidis A (2006) Determination of kinetic parameters in a pilot scale BNR system treating muinicipal wastewater. Global Nest J 8:68–74

  • Karimi M, Habibi-Rezai M, Safari M, Moosavi-Movahedi AA, Sayyah M, Sadeghi R, Kokini J (2014) Immobilization of endo-inulinase on poly-d-lysine coated CaCO3 micro-particles. Food Res Int 66:485–492. doi:10.1016/j.foodres.2014.08.041

    Article  CAS  Google Scholar 

  • Kihn A, Laurent P, Servais P (2000) Measurement of potential activity of fixed nitrifying bacteria in biological filters used in drinking water production. J Ind Microbiol Biotechnol 24:161–166. doi:10.1038/sj.jim.2900805

  • Kříženecká S, Trögl J, Pilařová V, Buchtová H, Čechovská L (2009) Čištení specifických odpadních vod pomocí imobilizovaných mikroorganismů. Studia Oecol 1:95–103

    Google Scholar 

  • Kubáč D, Čejková A, Masák J, Jirků V, Lemaire M, Gallienne E, Bolte J, Stloukal R, Martínková L (2006) Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats®. J Mol Catal B-Enzym 39:59–61. doi:10.1016/j.molcatb.2006.01.004

    Article  Google Scholar 

  • Lai MC, Traxler RW (1994) A coupled two-stage continuous fermentation for solvent production by Clostridium acetobutylicum. Enzyme Microb Technol 16:1021–1025. doi:10.1016/0141-0229(94)90136-8

    Article  CAS  Google Scholar 

  • Lin Y M, Tay J H, Liu Y, Hung Y T (2009) Biological nitrification and denitrification processes. In: Pereia NC, Hung Y, Shammas NK, Wang LK (eds) Biological Treatment Processes. Humana Press, New York, pp 539–588. doi:10.1007/978-1-60327-156-1

  • Liouni M, Drichoutis P, Nerantzis ET (2008) Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J Microbiol Biotechnol 24:281–288. doi:10.1007/s11274-007-9467-7

    Article  CAS  Google Scholar 

  • Lozinsky VI (1998) Cryotropic gelation of poly(vinyl alcohol). Russ Chem Rev 67:573–86. doi:10.1070/RC1998v067n07ABEH000399

    Article  Google Scholar 

  • Lozinsky VI, Plieva FM (1998) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. Enzyme Microb Technol 23:227–242. doi:10.1016/S0141-0229(98)00036-2

    Article  CAS  Google Scholar 

  • Lu C, Zhao J, Yang ST, Wei D (2012) Fed-batch fermentation for n-butanol production from Cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387. doi:10.1016/j.biortech.2011.10.089

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Uemoto H, Watanabe A (2008) Nitrogen-removal bioreactor capable of simultaneous nitrification and denitrification for application to industrial wastewater treatment. Biochem Eng J 41:59–66. doi:10.1016/j.bej.2008.03.008

    Article  CAS  Google Scholar 

  • Novák L, Stloukal R, Rosenberg M. Způsob odstraňování dusíkatého znečištění z pitných, užitkových a odpadních vod [Means of nitrogenous pollution removal from drinking water, process water and wastewater]. Czech Republic patent CZ 2004-438 A3. 2004 March 30

  • Nowak J (2001) Comparison of Polish industrial distillery yeast with ethanol producing bacteria Zymomonas mobilis. EJPAU Food Sci Technol. http://www.ejpau.media.pl/volume4/issue2/food/art-06.html. Accessed 30 Sept 2015

  • Olcer Z, Ozmen MM, Sahin ZM, Yilmanz F, Tanriseven A (2013) Highly efficient method towards in situ immobilization of invertase using cryogelation. Appl Biochem Biotechnol 171:2142–2152. doi:10.1007/s12010-013-0507-5

    Article  CAS  PubMed  Google Scholar 

  • Pawar SV, Ganapati DY (2014) PVA/chitosan–glutaraldehyde cross-linked nitrile hydratase as reusable biocatalyst for conversion of nitriles to amides. J Mol Catal B Enzym 101:115–121. doi:10.1016/j.molcatb.2014.01.005

    Article  CAS  Google Scholar 

  • Ravnjak M, Vrtovšek J, Pintar A (2013) Denitrification of drinking water in a two-stage membrane bioreactor by using immobilized biomass. Bioresour Technol 128:804–808. doi:10.1016/j.biortech.2012.10.055

    Article  CAS  PubMed  Google Scholar 

  • Rebroš M, Rosenberg M, Krištofíková Ľ, Stloukal R (2005a) Mikrobiálna produkcia palivového etanolu: baktérie alebo kvasinky? Chem List 99:402–409

    Google Scholar 

  • Rebroš M, Rosenberg M, Stloukal R, Krištofíková Ľ (2005b) High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats®. Lett Appl Microbiol 41:412–416. doi:10.1111/j.1472-765X.2005.01770.x

    Article  PubMed  Google Scholar 

  • Rebroš M, Rosenberg M, Mlichová Z, Krištofíkova Ľ, Paluch M (2006) A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis. Enzyme Microb Technol 39:800–804. doi:10.1016/j.enzmictec.2006.01.001

    Article  Google Scholar 

  • Rebroš M, Rosenberg M, Mlichová Z, Krištofíková Ľ (2007) Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules. Food Chem 102:784–787. doi:10.1016/j.foodchem.2006.06.020

    Article  Google Scholar 

  • Rebroš M, Rosenberg M, Grosová Z, Krištofíková L, Paluch M, Šipöcz M (2009) Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl Biochem Biotechnol 158:561–567. doi:10.1007/s12010-008-8475-x

    Article  PubMed  Google Scholar 

  • Rebroš M, Pilníková A, Šimčíková D, Weignerová L, Stloukal R, Křen V, Rosenberg M (2013) Recombinant α-L-rhamnosidase of Aspergillus terreus immobilization in polyvinylalcohol hydrogel and its application in rutin derhamnosylation. Biocatal Biotransfor 31:329–334. doi:10.3109/10242422.2013.858711

    Article  Google Scholar 

  • Rebroš M, Lipták L, Rosenberg M, Bučko M, Gemeiner P (2014) Biocatalysis with Escherichia coli-overexpressing cyclopentanone monooxygenase immobilized in polyvinylalcohol gel. Lett Appl Microbiol 58:556–563. doi:10.1111/lam.12227

    Article  PubMed  Google Scholar 

  • Rehn G, Grey C, Branneby C, Lindberg L, Adlecreutz P (2012) Activity and stability of different immobilized preparations of recombinant E. coli cells containing ω-transaminase. Process Biochem 47:1129–1134. doi:10.1016/j.procbio.2012.04.013

    Article  CAS  Google Scholar 

  • Rivaldi JD, Sarrouh BF, Da Silva SS (2008) An evaluation of different bioreactor configurations with immobilized yeast for bioethanol production. Int J Chem React Eng. http://producao.usp.br/handle/BDPI/14624. Accessed 30 Sept 2015

  • Rosenberg M, Rebroš M, Krištofíková Ľ, Malátová K (2005) High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats. Biotechnol Lett 27:1943–1947. doi:10.1007/s10529-005-3907-y

    Article  CAS  PubMed  Google Scholar 

  • Samonin VV, Elikova EE (2004) A study of the adsorption of bacterial cells on porous materials. Microbiology 73:696–701. doi:10.1007/s11021-005-0011-1

    Article  CAS  Google Scholar 

  • Schlieker M, Vorlop KD (2006) A novel immobilization method for entrapment LentiKats®. In: Guisan JM (ed) Immobilization of enzymes and cells. Humana Press, New Jersey, pp 333–343

    Chapter  Google Scholar 

  • Segura GA, Alcalde M, Plou FJ, Remaud-Simeon M, Monsan P, Ballesteros A (2003) Encapsulation in LentiKats of Dextransucrase from Leuconostoc mesenteroides NRRL B-1299, and its effect on product selectivity. Biocatal Biotransfor 21(6):325–331. doi:10.1080/10242420310001630191

    Article  Google Scholar 

  • Segura GA, Alcalde M, Bernabé M, Ballesteros A, Plou FJ (2006) Synthesis of methyl α-D-glucooligosaccharides by entrapped dextransucrase from Leuconostoc mesenteroides B-1299. J Biotechnol 124:439–445. doi:10.1016/j.jbiotec.2005.12.031

    Article  PubMed  Google Scholar 

  • Sievers M, Schäfer S, Jahnz U, Schlieker M, Vorlop KD (2002) Significant reduction of energy consumption of sewage treatment by using LentiKats® encapsulated nitrifying bacteria. Landbauforsch Volk 241:81–86

    CAS  Google Scholar 

  • Sievers M, Vorlop KD, Hahne J, Schlieker M, Schäfer S (2003) Advanced nitrogen elimination by encapsulated nitrifiers. Water Sci Technol 48:19–26

    CAS  PubMed  Google Scholar 

  • Soleimani M, Tabil L (2014) Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochem Eng J 82:166–173. doi:10.1016/j.bej.2013.11.011

  • Song SH, Choi SS, Park K, Yoo YJ (2005) Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme Microb Technol 37:567–573. doi:10.1016/j.enzmietec.2005.07.012

    Article  CAS  Google Scholar 

  • Sperandio M, Espinosa M (2008) Modelling an aerobic submerged membrane bioreactor with ASM models on a large range of sludge retention time. Desalination 231:82–90. doi:10.1016/j.desal.2007.11.040

  • Stloukal R, Watzková J, Gregušová B (2014) Dye decolorisation by laccase immobilized in lens-shaped poly(vinyl alcohol) hydrogel capsules. Chem Pap 68:1514–1520. doi:10.2478/s11696-014-0601-3

    Article  CAS  Google Scholar 

  • Survase SA, Heiningen A, Granstrom T (2012) Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 93:2309–2316. doi:10.1007/s00253-011-3761-x

    Article  CAS  PubMed  Google Scholar 

  • Torrelo G, Nelleke M, Stloukal R, Hanefeld U (2014) Immobilized hydroxynitrile lyase: a comparative study of recyclability. ChemCatChem 6:1096–1102. doi:10.1002/cctc.201300892

    Article  CAS  Google Scholar 

  • Trögl J, Pilařová V, Dáňová P, Holíček R, Krudencová J, Měchurová J, Kohlová M, Krhůtková O, Boušková A, Mrákota J, Stloukal R (2010) Odstraňování dusičnanů a dusitanů z vod s vysokým obsahem solí pomocí biotechnologie lentikats. Chemagazín 5:9–11

    Google Scholar 

  • Trögl J, Boušková A, Mrákota J, Pilařová V, Krudencová J, Měchura J, Kříženecká S, Stloukal R (2011a) Removal of nitrates from simulated ion-exchange brines with Paracoccus denitrificans encapsulated in Lentikats biocatalyst. Desalination 275:82–86. doi:10.1016/j.desal.2011.02.033

    Article  Google Scholar 

  • Trögl J, Pilařová V, Boušková A, Mrákota J, Stloukal R (2011b) Application of Lentikats Biotechnology for removal of nitrates from ion-exchange brines: implications for adaptation of encapsulated denitrifiers. Afr J Biotechnol 10:18304–18310. doi:10.5897/AJB11.2302

    Article  Google Scholar 

  • Trögl J, Krhůtková O, Pilařová V, Dáňová P, Holíček R, Kohlová M, Hejda S, Smrčka J, Boušková A, Křiklavová L (2012) Removal of nitrates from high-salinity wastewaters from desulphurization process with denitrifying bacteria encapsulated in Lentikats Biocatalyst. Int J Environ Sci Technol 9:425–432. doi:10.1007/s13762-012-0048-4

    Article  Google Scholar 

  • Vacková L, Srb M, Stloukal R, Wanner J (2011) Comparison of denitrification at low temperature using encapsulated Paracoccus denitrificans, Pseudomonas fluorescens and mixed culture. Bioresour Technol 102:4661–4666. doi:10.1016/j.biortech.2011.01.024

    Article  PubMed  Google Scholar 

  • Vacková L, Stloukal R, Wanner J (2012a) The possibility of using encapsulated nitrifiers for treatment of rejectwater coming from anaerobic digestion. Water Sci Technol 65:1428–1434. doi:10.2166/wst.2012.028

    Article  PubMed  Google Scholar 

  • Vacková L, Stloukal R, Wanner J (2012b) Determination of low concentration of Paracoccus denitrificans encapsulated in polyvinyl alcohol LentiKat’s pellets. Appl Microbiol Biotechnol 94:1359–1364. doi:10.1007/s00253-012-4073-5

    Article  PubMed  Google Scholar 

  • Vorlop KD, Breford J (1994) Verfahren und Vorrichtung zur Herstellung von Teilchen aus einem flüssigen Medium. German patent DE 4424998 A1. July 15

  • Vorlop KD, Klein J (1983) New developments in the field of cell immobilization: formation of biocatalyst by ionotrophic gelation. In: Lafferty RM, Maier E (eds) Enzyme Technology. Springer, Berlin, pp 219–235

    Chapter  Google Scholar 

  • Wang P, Yuan Y, Li Q, Yang J, Zheng Y, He M, Geng H, Li X, Liu D (2013) Isolation and immobilization of new aerobic denitrifying bacteria. Int Biodeterior Biodegrad 76:12–17. doi:10.1016/j.ibiod.2012.06.008

    Article  CAS  Google Scholar 

  • Wijffels RH, Schepers AW, Smit M, Gooijer CD, Tramper J (1994) Effect of initial biomass concentration on the growth of immobilized Nitrosomonas europaea. Appl Microbiol Biotechnol 42:153–157. doi:10.1007/BF00170239

  • Wilson L, Illanes A, Pessela BCC, Abian O, Fernández-Lafuente R, Guisán JM (2004) Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86:558–562. doi:10.1002/bit.20107

    Article  CAS  PubMed  Google Scholar 

  • Yen HW, Li RJ (2011) The effects of dilution rate and glucose concentration on continuous acetone–butanol–ethanol fermentation by Clostridium acetobutylicum immobilized on bricks. J Chem Technol Biotechnol 86:1399–1404. doi:10.1002/jctb.2640

    Article  CAS  Google Scholar 

  • Zajkoska P, Rebroš M, Rosenberg M (2013) Biocatalyst with immobilized Escherichia coli. Appl Microbiol Biotechnol 97:1441–1445. doi:10.1007/s00253-012-4651-6

    Article  CAS  PubMed  Google Scholar 

  • Zajkoska P, Rosenberg M, Heath R, Malone KJ, Stloukal R, Turner NJ, Rebroš M (2014) Immobilised whole-cell recombinant monoamine oxidase biocatalysis. Appl Microbiol Biotechnol 99:1229–1236. doi:10.1007/s00253-014-5983-1

    Article  PubMed  Google Scholar 

  • Zhang Y, Chen X, Qi B, Luo J, Shen F, Su Y, Khan R, Wan Y (2014) Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresour Technol 163:160–166. doi:10.1016/j.biortech.2014.04.038

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Tashiro Y, Yoshida T, Gao M, Wang Q, Sonomoto K (2013) Continous butanol fermentation from xylose with high cell density by cell recycling system. Bioresour Technol 129:360–365. doi:10.1016/j.biortech.2012.11.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by GRAIL (grant agreement no. 613667), project co-financed by the European Commission under the Seventh Framework Programme. This work was co-funded by the Slovak Research and Development Agency under the contract no. DO7RP-0045-12, APVV-0656-11 and by the Slovak Grant Agency for Science VEGA 1/0229/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rebroš.

Ethics declarations

This article does not contain any studies with human participants or animals, performed by any of the authors.

Conflict of interest

The authors declared that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasňan, V., Stloukal, R., Rosenberg, M. et al. Immobilization of cells and enzymes to LentiKats®. Appl Microbiol Biotechnol 100, 2535–2553 (2016). https://doi.org/10.1007/s00253-016-7283-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7283-4

Keywords

Navigation