Skip to main content
Log in

Biocatalysis with immobilized Escherichia coli

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Immobilization is one of the great tools for developing economically and ecologically available biocatalysts and can be applied for both enzymes and whole cells. Much research dealing with the immobilization of Escherichia coli has been published in the past two decades. E. coli in the form of immobilized biocatalyst catalyzes many interesting reactions and has been used mainly in laboratories, but also on an industrial scale, leading to the production of valuable substances. It has the potential to be applied in many fields of modern biotechnology. This paper aims to give a general overview of immobilization techniques and matrices suitable mostly for entrapment, encapsulation, and adsorption, which have been most frequently used for the immobilization of E. coli. An extensive analysis reviewing the history and current state of immobilized E. coli catalyzing different types of biotransformations is provided. The review is organized according to the enzymes expressed in immobilized E. coli, which were grouped into main enzyme classes. The industrial applications of immobilized E. coli biocatalyst are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenbuchner J, Mattes R (2005) Escherichia coli. In: Gellissen G (ed) Production of recombinant proteins. Wiley-VCH, Weinheim, pp 7–43

    Chapter  Google Scholar 

  • Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013. doi:10.1039/b512706h

    Article  CAS  Google Scholar 

  • Bagherinejad MR, Korbekandi H, Tavakoli N, Abedi D (2012) Immobilization of penicillin G acylase using permeabilized Escherichia coli whole cells within chitosan beads. RPS 7:79–85

    CAS  Google Scholar 

  • Bavaro T (2007) Chemo-enzymatic synthesis of nucleosides and nucleotides by immobilized and stabilized enzymes. Scientifica Acta 1:65–69

    Google Scholar 

  • Bennett EM, Li C, Allan PW, Parker WB, Ealick SE (2003) Structural basis for substrate specificity of Escherichia coli purine nucleoside phosphorylase. J Biol Chem 278:47110–47118. doi:10.1074/jbc.M304622200

    Article  CAS  Google Scholar 

  • Bernal V, Gonzalez-Veracruz M, Canovas M, Iborra JL (2007) Plasmid maintenance and physiology of a genetically engineered Escherichia coli strain during continuous l-carnitine production. Biotechnol Lett 29:1549–1556. doi:10.1007/s10529-007-9432-4

    Article  CAS  Google Scholar 

  • Bielecki S, Bolek R (1996) Immobilization of recombinant E. coli cells with phenol-lyase activity. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier Science, Amsterdam, pp 472–478

    Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan J (ed) Methods in biotechnology: immobilization of enzymes and cells, 2nd edn. Humana Press Inc., Totowa, pp 345–355

    Google Scholar 

  • Bucko M, Schenkmayerova A, Gemeiner P, Vikartovska A, Mihovilovic MD, Lacik I (2011) Continuous testing system for Baeyer–Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzym Microb Technol 49:284–288

    Article  CAS  Google Scholar 

  • Bucko M, Mislovicova D, Nahalka J, Vikartovska A, Sefcovicova J, Katrlik J, Tkac J, Gemeiner P, Lacik I, Stefuca V, Polakovic M, Rosenberg M, Rebros M, Smogrovicova D, Svitel J (2012) Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chem Pap 66:983–998

    Article  CAS  Google Scholar 

  • Cánovas M, Bernal V, González M, Kleber HP, Iborra JL (2005) Factors affecting the biotransformation of trimethylammonium compounds into l-carnitine by Escherichia coli. Biochem Eng J 26:145–154. doi:10.1016/j.bej.2005.04.027

    Article  Google Scholar 

  • Carballeira JD, Quezada MA, Hoyos P, Simeo Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereoselective red–ox reactions. Biotechnol Adv 27:686–714. doi:10.1016/j.biotechadv.2009.05.001

    Article  CAS  Google Scholar 

  • Cardenas-Fernandez M, Neto W, Lopez C, Alvaro G, Tufvesson P, Woodley JM (2012) Immobilization of Escherichia coli containing ω-transaminase activity in LentiKats®. Biotechnol Prog 28:693–698. doi:10.1002/btpr.1538

    Article  CAS  Google Scholar 

  • Chang TMS (2006) Artificial cells, encapsulation, and immobilization. Ann NY Acad Sci:71–83.

  • Chao YP, Lo TE, Luo NS (2000) Selective production of l-aspartic acid and l-phenylalanine by coupling reactions of aspartase and aminotransferase in Escherichia coli. Enzyme Microb Technol 27:19–25

    Article  CAS  Google Scholar 

  • Chen JP, Lin WS (2003) Sol–gel powders and supported sol–gel polymers for immobilization of lipase in ester synthesis. Enzyme Microb Technol 32:801–811. doi:10.1016/s0141-0229(03)00052-8

    Article  CAS  Google Scholar 

  • Chen J-P, Lin Y-S (2007) Sol–gel-immobilized recombinant E. coli for biosorption of Cd2+. J Chin Inst Chem Eng 38:235–243. doi:10.1016/j.jcice.2007.03.005

    Article  CAS  Google Scholar 

  • Chen XA, Xu ZN, Cen PL, Wong WKR (2006) Enhanced plasmid stability and production of hEGF by immobilized recombinant E. coli JM101. Biochem Eng J 28:215–219. doi:10.1016/j.bej.2005.03.005

    Article  CAS  Google Scholar 

  • Chen H-Q, Chen X-M, Li Y, Wang J, Jin Z-Y, Xu X-M, Zhao J-W, Chen T-X, Xie Z-J (2009) Purification and characterisation of exo- and endo-inulinase from Aspergillus ficuum JNSP5-06. Food Chem 115:1206–1212. doi:10.1016/j.foodchem.2009.01.067

    Article  CAS  Google Scholar 

  • Chibata I, Tosa T (1981) Use of immobilized cells. Annu Rev Biophys Bio 10:197–216. doi:10.1146/annurev.bb.10.060181.001213

    Article  CAS  Google Scholar 

  • Chibata I, Tosa T, Sato T (1974) Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Appl Microbiol 27:878–885

    CAS  Google Scholar 

  • de Taxis du Poët P, Arcand Y, Bernier R Jr, Barbotin JN, Thomas D (1987) Plasmid stability in immobilized and free recombinant Escherichia coli JM105(pKK223-200): importance of oxygen diffusion, growth rate, and plasmid copy number. Appl Environ Microbiol 53:1548–1555

    Google Scholar 

  • de Vos P, Bucko M, Gemeiner P, Navratil M, Svitel J, Faas M, Strand BL, Skjak-Braek G, Morch YA, Vikartovska A, Lacik I, Kollarikova G, Orive G, Poncelet D, Pedraz JL, Ansorge-Schumacher MB (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570

    Article  Google Scholar 

  • Desimone MF, Degrossi J, D'Aquino M, Diaz LE (2003) Sol–gel immobilisation of Saccharomyces cerevisiae enhances viability in organic media. Biotechnol Lett 25:671–674

    Article  CAS  Google Scholar 

  • Desimone MF, Alvarez GS, Foglia ML, Diaz LE (2009) Development of sol–gel hybrid materials for whole cell immobilization. Recent Pat Biotechnol 3:55–60

    Article  CAS  Google Scholar 

  • Eggeling L, Sahm H (2009) Amino acid production. In: Schaechter M (ed) Encyclopedia of microbiology. 3 edn. Academic, pp 150–158.

  • Fennouh S, Guyon S, Livage J, Roux C (2000) Sol–gel entrapment of Escherichia coli. J Sol-gel Sci Technol 19:647–649

    Article  CAS  Google Scholar 

  • Fusee MC, Swann WE, Calton GJ (1981) Immobilization of Escherichia coli cells containing aspartase activity with polyurethane and its application for l-aspartic acid production. Appl Environ Microbiol 42:672–676

    CAS  Google Scholar 

  • Gao H (2004) Preparation and properties of microencapsulated genetically engineered bacteria cells for oral therapy of uremia. Chinese Sci Bull 49:1117–1121. doi:10.1360/03wb0199

    Article  CAS  Google Scholar 

  • Georgiou G, Chalmers JJ, Shuler ML, Wilson DB (1985) Continuous immobilized recombinant protein production from E. coli capable of selective protein excretion: a feasibility study. Biotechnol Prog 1:75–79. doi:10.1002/btpr.5420010114

    Article  CAS  Google Scholar 

  • Gibello A, Garbi C, Allende JL, Martin M (2004) Improving dioxygenase stability by gene chromosome insertion: implementation in immobilized-cell systems. Curr Microbiol 49:390–395. doi:10.1007/s00284-004-4283-x

    Article  CAS  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. doi:10.1016/j.tibtech.2006.10.004

    Article  CAS  Google Scholar 

  • Hsiau LT, Lee WC, Wang FS (1997) Immobilization of whole-cell penicillin G acylase by entrapping within polymethacrylamide beads. Appl Biochem Biotechnol 62:303–315

    Article  CAS  Google Scholar 

  • Huang J, Jin N, Katsuda T, Fukuda H, Yamaji H (2009) Immobilization of Escherichia coli cells using polyethyleneimine-coated porous support particles for l-aspartic acid production. Biochem Eng J 46:65–68. doi:10.1016/j.bej.2009.04.010

    Article  CAS  Google Scholar 

  • Hucík M, Bučko M, Gemeiner P, Štefuca V, Vikartovská A, Mihovilović MD, Rudroff F, Iqbal N, Chorvát D Jr, Lacík I (2010) Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer–Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnol Lett 32:675–680. doi:10.1007/s10529-010-0203-2

    Article  Google Scholar 

  • Jung ES, Kim HJ, Oh DK (2005) Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant in a packed-bed bioreactor. Biotechnol Prog 21:1335–1340

    Article  CAS  Google Scholar 

  • Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome… or the cart before the horse. Biotechnol Adv 22:633–658. doi:10.1016/j.biotechadv.2004.06.003

    Article  CAS  Google Scholar 

  • Kamrat T, Nidetzky B (2007) Entrapment in E. coli improves the operational stability of recombinant β-glycosidase CelB from Pyrococcus furiosus and facilitates biocatalyst recovery. J Biotechnol 129:69–76. doi:10.1016/j.jbiotec.2006.11.020

    Article  CAS  Google Scholar 

  • Kandimalla V, Tripathi V, Ju H (2006) Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit Rev Anal Chem 36:73–106. doi:10.1080/10408340600713652

    Article  CAS  Google Scholar 

  • Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells—engineering principles. Chem Eng Sci 40:1321–1354. doi:10.1016/0009-2509(85)80074-9

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397. doi:10.1016/j.fm.2003.10.005

    Article  CAS  Google Scholar 

  • Kovalenko GA, Perminova LV, Chuenko TV, Sapunova LI, Shlyakhotko EA, Lobanok AG (2011) Immobilization of a recombinant strain producing glucose isomerase inside SiO2-xerogel and properties of prepared biocatalysts. Appl Biochem Microbiol 47:151–157. doi:10.1134/s0003683811020074

    Article  CAS  Google Scholar 

  • León R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzym Microb Technol 23:483–500. doi:10.1016/s0141-0229(98)00078-7

    Article  Google Scholar 

  • Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH Verlag, Weinheim

    Chapter  Google Scholar 

  • Lozinsky VI, Plieva FM (1998) Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. Enzyme Microb Technol 23:227–242. doi:10.1016/s0141-0229(98)00036-2

    Article  CAS  Google Scholar 

  • Lu Y, Mei L (2007) Production of indigo by immobilization of E. coli BL21 (DE3) cells in calcium-alginate gel capsules. Chinese J Chem Eng 15:387–390. doi:10.1016/s1004-9541(07)60096-2

    Article  CAS  Google Scholar 

  • Luo W, Liu Y, Zhu X, Zhao W, Huang L, Cai J, Xu Z, Cen P (2011) Cloning and characterization of purine nucleoside phosphorylase in Escherichia coli and subsequent ribavirin biosynthesis using immobilized recombinant cells. Enzyme Microb Technol 48:438–444. doi:10.1016/j.enzmictec.2011.03.008

    Article  CAS  Google Scholar 

  • Mahmoudian M (2011) Biocatalysis: the road ahead. Org Process Res Dev 15:173–174. doi:10.1021/Op100316t

    Article  CAS  Google Scholar 

  • Martin AR, DiSanto R, Plotnikov I, Kamat S, Shonnard D, Pannuri S (2007) Improved activity and thermostability of (S)-aminotransferase by error-prone polymerase chain reaction for the production of a chiral amine. Biochem Eng J 37:246–255. doi:10.1016/j.bej.2007.05.001

    Article  CAS  Google Scholar 

  • Martino A, Schiraldi C, Fusco S, Di Lernia I, Costabile T, Pellicano T, Marotta M, Generoso M, van der Oost J, Sensen CW, Charlebois RL, Moracci M, Rossi M, De Rosa M (2001) Properties of the recombinant α-glucosidase from Sulfolobus solfataricus in relation to starch processing. J Mol Catal B-Enzym 11:787–794

    Article  CAS  Google Scholar 

  • Mateus DMR, Alves SS, da Fonseca MMR (1999) Diffusion in cell-free and cell immobilising κ-carrageenan gel beads with and without chemical reaction. Biotechnol Bioeng 63:625–631

    Article  CAS  Google Scholar 

  • Mazutti MA, Skrowonski A, Boni G, Zabot GL, Silva MF, de Oliveira D, Di Luccio M, Filho FM, Rodrigues MI, Treichel H (2010) Partial characterization of inulinases obtained by submerged and solid-state fermentation using agroindustrial residues as substrates: a comparative study. Appl Biochem Biotechnol 160:682–693. doi:10.1007/s12010-009-8687-8

    Article  CAS  Google Scholar 

  • McHugh DJ (1987) Production and utilization of products from commercial seaweeds, vol 288. FAO Fish Tech Pap, Rome

    Google Scholar 

  • McIver AM, Garikipati JS, Bankole KS, Gyamerah M, Peeples TL (2008) Microbial oxidation of naphthalene to cis-1,2-naphthalene dihydrodiol using naphthalene dioxygenase in biphasic media. Biotechnol Prog 24:593–598

    Article  CAS  Google Scholar 

  • Mersinger LJ, Hann EC, Cooling FB, Gavagan JE, Ben-Bassat A, Wu S, Petrillo KL, Payne MS, DiCosimo R (2005) Production of acrylamide using alginate-immobilized E. coli expressing Comamonas testosteroni 5-MGAM-4D nitrile hydratase. Adv Synth Catal 347:1125–1131. doi:10.1002/adsc.200505039

    Article  CAS  Google Scholar 

  • Mihovilovic MD (2006) Enzyme mediated Baeyer–Villiger oxidations. Curr Org Chem 10:1265–1287

    Article  CAS  Google Scholar 

  • Norouzian D, Javadpour S, Moazami N, Akbarzadeh A (2002) Immobilization of whole cell penicillin G acylase in open pore gelatin matrix. Enzyme Microb Technol 30:26–29. doi:10.1016/s0141-0229(01)00445-8

    Article  CAS  Google Scholar 

  • Oh DK (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76:1–8. doi:10.1007/s00253-007-0981-1

    Article  CAS  Google Scholar 

  • Oriel P (1988) Amylase production by Escherichia coli immobilized in silicone foam. Biotechnol Lett 10:113–116

    Article  CAS  Google Scholar 

  • Orive G, Hernández RM, Gascón Rodríguez A, Pedraz JL (2006) Encapsulation of cells in alginate gels. In: Guisan JM (ed) Methods in biotechnology: immobilization of enzymes and cells, 2nd edn. Humana Press Inc., Totowa, pp 345–355

    Chapter  Google Scholar 

  • Ospina S, Barzana E, Ramirez OT, Lopez-Munguía A (1996) Strategies in the design of an enzymatic process for the synthesis of ampicillin: a whole cell E. coli recombinant penicillin amidase biocatalyst. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier Science, Amsterdam, pp 464–471

    Google Scholar 

  • Pan H, Bao W, Xie Z, Zhang J, Li Y (2010) Immobilization of Escherichia coli cells with cis-epoxysuccinate hydrolase activity for d(−)-tartaric acid production. Biotechnol Lett 32:235–241. doi:10.1007/s10529-009-0134-y

    Article  CAS  Google Scholar 

  • Papi RM, Chaitidou SA, Trikka FA, Kyriakidis DA (2005) Encapsulated Escherichia coli in alginate beads capable of secreting a heterologous pectin lyase. Microb Cell Fact 4:35. doi:10.1186/1475-2859-4-35

    Article  Google Scholar 

  • Park JB (2007) Oxygenase-based whole-cell biocatalysis in organic synthesis. J Microbiol Biotechnol 17:379–392

    CAS  Google Scholar 

  • Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  CAS  Google Scholar 

  • Petzelbauer I, Kuhn B, Splechtna B, Kulbe KD, Nidetzky B (2002) Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion. Biotechnol Bioeng 77:619–631. doi:10.1002/Bit.10110

    Article  CAS  Google Scholar 

  • Pilkington HP (2005) Food bioconversions and metabolite productions. In: Nedović V, Willaert R (eds) Application of cell immobilisation biotechnology. Focus on biotechnology, vol 8B. Springer, Dordrecht, pp 321–331

    Chapter  Google Scholar 

  • Prakash S, Chang TMS (1996) Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat Med 2:883–887

    Article  CAS  Google Scholar 

  • Quintana MG, Dalton H (1999) Biotransformation of aromatic compounds by immobilized bacterial strains in barium alginate beads. Enzyme Microb Technol 24:232–236

    Article  CAS  Google Scholar 

  • Ramakrishna SV, Prakasham RS (1999) Microbial fermentations with immobilized cells. Curr Sci 77:87–100

    CAS  Google Scholar 

  • Rebroš M, Rosenberg M, Stloukal R, Krištofíková L (2005) High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats®. Lett Appl Microbiol 41:412–416. doi:10.1111/j.1472-765X.2005.01770.x

    Article  Google Scholar 

  • Rebroš M, Rosenberg M, Mlichová Z, Krištofíková L, Paluch M (2006) A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis. Enzyme Microb Technol 39:800–804. doi:10.1016/j.enzmictec.2006.01.001

    Article  Google Scholar 

  • Rebroš M, Rosenberg M, Grosová Z, Krištofíková L, Paluch M, Šipöcz M (2009) Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl Biochem Biotechnol 158:561–570. doi:10.1007/s12010-008-8475-x

    Article  Google Scholar 

  • Rehn G, Grey C, Branneby C, Lindberg L, Adlercreutz P (2012) Activity and stability of different immobilized preparations of recombinant E. coli cells containing ω-transaminase. Process Biochem 47:1129–1134. doi:10.1016/j.procbio.2012.04.013

    Article  CAS  Google Scholar 

  • Rhimi M, Ben Messaoud E, Borgi MA, Ben Khadra K, Bejar S (2007) Co-expression of l-arabinose isomerase and d-glucose isomerase in E. coli and development of an efficient process producing simultaneously d-tagatose and d-fructose. Enzyme Microb Technol 40:1531–1537. doi:10.1016/j.enzmictec.2006.10.032

    Article  CAS  Google Scholar 

  • Samonin VV, Elikova EE (2004) A study of the adsorption of bacterial cells on porous materials. Microbiology 73:696–701

    Article  CAS  Google Scholar 

  • Schiraldi C, Martino A, Costabile T, Generoso M, Marotta M, De Rosa M (2004) Glucose production from maltodextrins employing a thermophilic immobilized cell biocatalyst in a packed-bed reactor. Enzyme Microb Technol 34:415–421. doi:10.1016/j.enzmictec.2003.11.006

    Article  CAS  Google Scholar 

  • Schlieker M, Vorlop K (2006) A novel immobilization method for entrapment LentiKats®. In: Guisan J (ed) Methods in biotechnology: immobilization of enzymes and cells, 2nd edn. Humana Press Inc., Totowa, pp 333–343

    Chapter  Google Scholar 

  • Seol E, Manimaran A, Jang Y, Kim S, Oh YK, Park S (2011) Sustained hydrogen production from formate using immobilized recombinant Escherichia coli SH5. Int J Hydrogen Energ 36:8681–8686. doi:10.1016/j.ijhydene.2010.05.118

    Article  CAS  Google Scholar 

  • Shibatani T (1996) Industrial application of immobilized biocatalysts in Japan. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier Science, Amsterdam, pp 585–591

    Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128. doi:10.1016/j.jbiotec.2004.08.004

    Article  Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  Google Scholar 

  • Szymańska G, Sobierajski B, Chmiel A (2011) Immobilized cells of recombinant Escherichia coli strain for continuous production of l-aspartic acid. Pol J Microbiol 60:105–112

    Google Scholar 

  • Thu B, Smidrød S, Skjåk-Braek G (1996) Alginate gels—some structure-function correlations relevant to their use as immobilization matrix for cells. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier Science, Amsterdam, pp 19–30

    Google Scholar 

  • Trelles JA, Bentancor L, Schoijet A, Porro S, Lewkowicz ES, Sinisterra JV, Iribarren AM (2004a) Immobilized Escherichia coli BL21 as a catalyst for the synthesis of adenine and hypoxanthine nucleosides. Chem Biodivers 1:280–288. doi:10.1002/cbdv.200490024

    Article  CAS  Google Scholar 

  • Trelles JA, Fernandez-Lucas J, Condezo LA, Sinisterra JV (2004b) Nucleoside synthesis by immobilised bacterial whole cells. J Mol Catal B-Enzym 30:219–227. doi:10.1016/j.molcatb.2004.06.001

    Article  CAS  Google Scholar 

  • Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74:3634–3643. doi:10.1128/AEM.02708-07

    Article  CAS  Google Scholar 

  • Unrean P, Srienc F (2010) Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J Biotechnol 150:215–223. doi:10.1016/j.jbiotec.2010.08.002

    Article  CAS  Google Scholar 

  • Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267. doi:10.1080/10409230600817422

    Article  CAS  Google Scholar 

  • van de Velde F, Lourenco ND, Pinheiro HM, Bakker M (2002) Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal 344:815–835

    Article  Google Scholar 

  • Wang MY, Yu YT (2005) New method for preparing more stable microcapsules for the entrapment of genetically engineered cells. Artif Cell Blood Sub 33:257–269

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138

    Article  CAS  Google Scholar 

  • Yun JW, Song CH, Choi JW, Choi YJ, Song SK (1999) Production of inulo-oligosaccharides from inulin by recombinant E. coli containing endoinulinase activity. Bioprocess Eng 21:101–106. doi:10.1007/pl00009067

    CAS  Google Scholar 

  • Yuryev R, Liese A (2010) Biocatalysis: the outcast. Chem Cat Chem 2:103–107. doi:10.1002/cctc.200900126

    CAS  Google Scholar 

  • Zhou B, Martin GJ, Pamment NB (2008) Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol Bioeng 100:627–633. doi:10.1002/bit.21800

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by BIONEXGEN (grant agreement no: 266025), project cofinanced by the European Commission under the 7th Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rebroš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zajkoska, P., Rebroš, M. & Rosenberg, M. Biocatalysis with immobilized Escherichia coli . Appl Microbiol Biotechnol 97, 1441–1455 (2013). https://doi.org/10.1007/s00253-012-4651-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4651-6

Keywords

Navigation