Skip to main content
Log in

Removal of nitrates from high-salinity wastewaters from desulphurization process with denitrifying bacteria encapsulated in Lentikats Biocatalyst

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Successful elimination of high concentrations of N–NO x (up to 250 mg/L) from high salinity wastewaters (up to 35 g/L Cl + 17 g/L SO4 2−) originating from desulphurization process within coal power stations was achieved using pure cultures of denitrifying bacteria encapsulated in porous polyvinyl alcohol lenses (so called Lentikats Biocatalyst, LB). Laboratory batch tests revealed inhibitory influence of the raw wastewater on the denitrification activity, which was partially mitigated by the addition of P–PO4 3−. In following continuous tests, the denitrification activities reached the range 150–450 mg N/h/kg LB, i.e., values suitable for industrial scale applications. The higher activities were achieved under a lower salinity, higher N–NO x influent concentrations and a prolonged retention time. The effluent N–NO x concentrations were below the determination limit of 5 mg/L. After a period of 3 months, a significant decrease of denitrification activity of Lentikats Biocatalyst was observed. Addition of nutrients into the wastewater enabled fast regeneration of the initial activity. The overall results proved the applicability of Lentikats Biocatalysts for the removal of nitrates from high-salinity desulphurization water and other industrial wastewaters of similar character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beliavski M, Meerovich I, Tarre S, Green M (2010) Biological denitrification of brines from membrane treatment processes using an upflow sludge blanket (USB) reactor. Water Sci Technol 61(4):911–917

    Article  CAS  Google Scholar 

  • Bouskova A, Mrakota J, Stloukal R, Trogl J, Pilarova V, Kriklavova L, Lederer T (2011) Three examples of nitrogen removal from industrial wastewater using Lentikats Biotechnology. Desalination 280(1–3):191–196

    Google Scholar 

  • Bruss T, Mika D, Westermann B, Warnecke HJ (2002) Enantioselective hydrolysis of racemic epoxides with LentiKats((R))-encapsulated microorganisms. In: Landbaufor. Volkenrode, SH241, pp 127–129

  • Cyplik P, Grajek W, Marecik R, Kroliczak P, Dembczynski R (2007) Application of a membrane bioreactor to denitrification of brine. Desalination 207(1–3):134–143

    Article  CAS  Google Scholar 

  • Dincer AR, Kargi F (1999) Salt inhibition of nitrification and denitrification in saline wastewater. Environ Technol 20(11):1147–1153

    Article  CAS  Google Scholar 

  • Ersever I, Ravindran V, Pirbazari M (2007) Biological denitrification of reverse osmosis brine concentrates: I. batch reactor and chemostat studies. J Environ Eng Sci 6(5):503–518

    Article  CAS  Google Scholar 

  • Estuardo C, Marti MC, Huilinir C, Lillo EA, Von Bennewitz MR (2008) Improvement of nitrate and nitrite reduction rates prediction. Electron J Biotechnol 11(3). doi:10.2225/vol11-issue3-fulltext-6

  • Foglar L, Sipos L, Bolf N (2007) Nitrate removal with bacterial cells attached to quartz sand and zeolite from salty wastewaters. World J Microbiol Biotechnol 23(11):1595–1603

    Article  CAS  Google Scholar 

  • Glass C, Silverstein J (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res 32(3):831–839

    Article  CAS  Google Scholar 

  • Glass C, Silverstein J (1999) Denitrification of high-nitrate, high-salinity wastewater. Water Res 33(1):223–229

    Article  CAS  Google Scholar 

  • Grosova Z, Rosenberg M, Rebros M, Sipocz M, Sedlackova B (2008) Entrapment of beta-galactosidase in polyvinylalcohol hydrogel. Biotechnol Lett 30(4):763–767

    Article  CAS  Google Scholar 

  • Grosova Z, Rosenberg M, Gdovin M, Slavikova L, Rebros M (2009) Production of D-galactose using beta-galactosidase and Saccharomyces cerevisiae entrapped in poly(vinylalcohol) hydrogel. Food Chem 116(1):96–100

    Article  CAS  Google Scholar 

  • Hanaki K, Hirunmasuwan S, Matsuo T (1994) Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl-alcohol. Water Res 28(4):877–885

    Article  CAS  Google Scholar 

  • Hronska H, Grosova Z, Rosenberg M (2009) Hydrolysis of lactose in milk by Kluyveromyces lactis beta-galactosidase immobilized in polyvinylalcohol gel. J Food Nutr Res 48(2):87–91

    CAS  Google Scholar 

  • Jekel M, Buhr A, Willke T, Vorlop KD (1998a) Immobilization of biocatalysts in LentiKats. Chem Eng Technol 21(3):275–278

    Article  CAS  Google Scholar 

  • Jekel M, Buhr A, Willke T, Vorlop KD (1998b) Novel gel inclusion immobilisation systems (LentiKats) in biotechnology. Chem Ing Tech 70(4):438–441

    Article  CAS  Google Scholar 

  • Kriklavova L, Lederer T (2010). The use of nanofiber carriers in biofilm reactor for the treatment of industrial wastewaters. In: Nanocon 2010, 2nd International Conference, pp 165–170

  • Kubac D, Cejkova A, Masak J, Jirku V, Lemaire M, Gallienne E, Bolte J, Stloukal R, Martinkova L (2006) Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats (R). J Mol Catal B Enzym 39(1–4):59–61

    Article  CAS  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682

    Article  CAS  Google Scholar 

  • Mariangel L, Aspe E, Marti MC, Roeckel M (2008) The effect of sodium chloride on the denitrification of saline fishery wastewaters. Environ Technol 29(8):871–879

    Article  CAS  Google Scholar 

  • Mcadam EJ, Judd SJ (2008) Biological treatment of ion-exchange brine regenerant for re-use: a review. Sep Purif Technol 62(2):264–272

    Article  CAS  Google Scholar 

  • Mcadam EJ, Pawlett M, Judd SJ (2010) Fate and impact of organics in an immersed membrane bioreactor applied to brine denitrification and ion exchange regeneration. Water Res 44(1):69–76

    Article  CAS  Google Scholar 

  • Mohseni-Bandpi A, Elliott DJ (1998) Groundwater denitrification with alternative carbon sources. Water Sci Technol 38(6):237–243

    Article  CAS  Google Scholar 

  • Park EJ, Seo JK, Kim MR, Jung IH, Kim JY, Kim SK (2001) Salinity acclimation of immobilized freshwater denitrifier. Aquacult Eng 24(3):169–180

    Article  Google Scholar 

  • Pilarova V, Trogl J, Synek V (2011) Validation of photometric determinations of nitrites and CODCr using Spectroquant® sets in saline waters. Chem Listy 105(13):s55–s57

    Google Scholar 

  • Rebros M, Rosenberg M, Kristofikova L, Stloukal R (2005a) Microbial production of fuel ethanol: Bacteria or yeasts? Chem Listy 99(6):402–409

    CAS  Google Scholar 

  • Rebros M, Rosenberg M, Stloukal R, Kristofikova L (2005b) High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into LentiKats((R)). Lett Appl Microbiol 41(5):412–416

    Article  CAS  Google Scholar 

  • Rebros M, Rosenberg M, Grosova Z, Kristofikova L, Paluch M, Sipocz M (2009) 170 Ethanol Production from Starch Hydrolyzates using Zymomonas mobilis and Glucoamylase Entrapped in Polyvinylalcohol Hydrogel. Appl Biochem Biotechnol 158(3):561–570

    Article  CAS  Google Scholar 

  • Sievers M, Schafer S, Jahnz U, Schlieker M, Vorlop KD (2002) Significant reduction of energy consumption for sewage treatment by using LentiKat (R) encapsulated nitrifying bacteria. In: Landbaufor. Volkenrode SH241, pp 81–86

  • Trogl J, Bouskova A, Mrakota J, Pilarova V, Krudencova J, Mechurova J, Krizenecka S, Stloukal R (2011a) Removal of nitrates from simulated ion-exchange brines with Paracoccus denitrificans encapsulated in Lentikats Biocatalyst. Desalination 275(1–3):82–86

    Article  Google Scholar 

  • Trogl J, Bouskova A, Pilarova V, Mrakota J, Stloukal R (2011b) Application of Lentikats Biotechnology for removal of nitrates from ion-exchange brines: Implications for adaptation of encapsulated denitrifiers. Afr J Biotechnol 10(79):18304–18310

    CAS  Google Scholar 

  • Vackova L, Srb M, Stloukal R, Wanner J (2011) Comparison of denitrification at low temperature using encapsulated Paracoccus denitrificans, Pseudomonas fluorescens and mixed culture. Bioresour Technol 102(7):4661–4666

    Article  CAS  Google Scholar 

  • Vejvoda V, Kaplan O, Klozova J, Masak J, Cejkova A, Jirku V, Stloukal R, Martinkova L (2006) Mild hydrolysis of nitriles by Fusarium solani strain O1. Folia Microbiol 51(4):251–256

    Article  CAS  Google Scholar 

  • Vorlop KD, Jekel M (1999) Process for preparing a biocatalyst with a polyvinyl alcohol gel and biocatalyst produced by this process. German patent DE 198(27):552

    Google Scholar 

  • Wisniewski C, Persin F, Cherif T, Sandeaux R, Grasmick A, Gavach C, Lutin F (2002) Use of a membrane bioreactor for denitrification of brine from an electrodialysis process. Desalination 149(1–3):331–336

    Article  CAS  Google Scholar 

  • Yang PY, Nitisoravut S, Wu JS (1995) Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high-salt conditions. Water Res 29(6):1525–1532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was co-funded by the Ministry of Education, Youth, and sports of the Czech Republic (project 1M0554), LentiKat’s Inc., Prague and the Internal Grant Agencies of J. E. Purkyně University and Technical University in Liberec (project 7824/115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Trögl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trögl, J., Krhůtková, O., Pilařová, V. et al. Removal of nitrates from high-salinity wastewaters from desulphurization process with denitrifying bacteria encapsulated in Lentikats Biocatalyst. Int. J. Environ. Sci. Technol. 9, 425–432 (2012). https://doi.org/10.1007/s13762-012-0048-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0048-4

Keywords

Navigation