Skip to main content
Log in

Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Double layer alginate beads coated with chitosan were constructed for the entrapment of yeast cells used in alcoholic fermentations. Several construction parameters of the beads were studied. Among these parameters were the composition of the inner and the outer layer, the initial cell loading, the concentration of chitosan in the coating solution. Improved bead behavior was noticed by the use of chitosan as a coating agent to double layer alginate beads. The mechanical strength and the stability of the beads were enhanced. The polyelectrolyte complex membrane of alginate–chitosan reduced significantly the leakage of the entrapped cells into the medium. The aim of this work was to define the optimal conditions for the construction of the double layer alginate beads coated with chitosan with the purpose of using them for the fermentation of carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiedeh K, Gianasi E, Orienti I, Zecchi V (1997) Chitosan microcapsules as controlled release system for insulin. J Microencapsulation 14:567–576

    CAS  Google Scholar 

  • Alteriis E, Silvestro G, Poletto M, Romano V, Capitanio D, Compagno C, Parascandola P (2004) Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase. J Biotechnol 109:83–92

    Article  CAS  Google Scholar 

  • Amerine MA, Ough CS (1988) Methods for analysis of musts and wines, 2nd edn. John Wiley and sons, New York ISBN 0-471-62757-7, pp 88–94

  • Bienaimé C, Barbotin JN, Nava-Saucedo JE (2003) How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells. J Biomed Mater Res 67A:376–388

    Article  CAS  Google Scholar 

  • Chai Y, Mei LH, Wu GL, Lin DQ, Yao SJ (2004) Gelation conditions and transport properties of hollow calcium alginate capsules. Biotechnol Bioeng 87:228–233

    Article  CAS  Google Scholar 

  • Chandy T, Mooradian DL, Rao GHR (1999) Evaluation of modified alginate – chitosan – polyethylene glycol microcapsules for cell encapsulation. Artificial Organs 23:894–903

    Article  CAS  Google Scholar 

  • Cui JH, Goh JS, Kim PH, Choi SH, Lee BJ (2000) Survival and stability of Bifidobacteria loaded in alginate poly-l-lysine microparticles. Int J Pharm 210:51–59

    Article  CAS  Google Scholar 

  • Dervakos GA, Webb C (1991) On the merits of viable – cell immobilization. Biotech Adv 9:559–612

    Article  CAS  Google Scholar 

  • Gåserød O, Smidsrød O, Skjåk-Bræk G (1998) Microcapsules of alginate–chitosan – I. A quantitative study of the interaction between alginate and Chitosan. Biomaterials 19:1815–1825

    Article  Google Scholar 

  • Gåserød O, Sannes A, Skjåk-Bræk G (1999) Microcapsules of alginate–chitosan – II. A study of capsule stability and permeability. Biomaterials 20:773–783

    Article  Google Scholar 

  • Gòdia F, Casas C, Solà C (1991) Application of immobilized yeast cells to sparkling wine fermentation. Biotechnol Prog 7:468–470

    Article  Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith PJ, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  • Hari PR, Chandy T, Sharma CP (1996) Chitosan/Calcium-Alginate beads for oral delivery of insulin. J App Polymer Sci 59:1795–1801

    Article  CAS  Google Scholar 

  • Hirano S, Nagano N (1989) Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agric Biol Chem 53:3065–3066

    CAS  Google Scholar 

  • Hirano S (1994) Chitin and Chitosan. In: Elwers B, Hawkins S, Russey W (ed) Ullman’s encyclopedia of industrial chemistry, 5th edn. VCH Verlagsgesellschaft: Veinheim, FRG, vol A6 pp 231–232

  • Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome... or the cart before the horse. Biotechnol Adv 22:633–658

    Article  CAS  Google Scholar 

  • Kanke M, Katayama H, Tsuzuki S, Kuramoto H (1987) Application of chitin and chitosan to pharmaceutical preparation I: film preparation and in vivo evaluation. Chem Pharmaceutical Bull 37:523–525

    Google Scholar 

  • Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  • Lehr CM, Bouwstra JA, Schacht EH, Junginger HE (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharmaceutics 78:43–48

    Article  CAS  Google Scholar 

  • Li Q, Dunn ET, Grandmaison EW, Goosen MFA (1997) Applications and properties of chitosan. In: Goosen MFA (ed) Applications of chitin and chitosan. Technomic Publishing, Lancaster, USA pp 3–29

    Google Scholar 

  • Liu XD, Yu WY, Zhang Y, Xue WM, Yu WT, Xiong Y, Ma XJ, Chen Y, Yuan Q (2002) Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources. J Microencapsulation 19:775–782

    Article  CAS  Google Scholar 

  • Martins dos Santos VAP, Leenen EJTM, Rippoll MM, van der Sluis C, van Vliet T, Tramper J, Wijffels RH (1997) Relevance of rheological properties of gel beads for their mechanical stability in bioreactors. Biotechnol Bioeng 56:517–529

    Article  CAS  Google Scholar 

  • Martinsen A, Skjåk-Bræk G, Smidsrød O (1989) Alginate as immobilization material: I. correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33:79–89

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Murata Y, Maeda T, Miyamoto E, Kawashima S (1993) Preparation of chitosan-reinforced alginate gel beads – effects of chitosan on gel matrix erosion. Int J Pharmaceutics 96:139–145

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (1973) Natural Chelating Polymers: Alginic acid, Chitin and Chitosan. Pergamon Press, Oxford pp 144–174

    Google Scholar 

  • Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE (1990) Antimicrobial properties of N-carboxybutyl Chitosan. Antimicrob Agents Chemother 34:2019–2023

    CAS  Google Scholar 

  • Najafpour G, Younesi H, Ismail K S K (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour Technol 92:251–260

    Article  CAS  Google Scholar 

  • Norouzian D, Akbarzadeh A, Inanlou D N, Farahmand B, Saleh M, Sheikh-ul-Eslam F, Vaez J (2003) Biotransformation of alcohols to aldehydes by immobilized cells of Saccharomyces cerevisiae PTCC5080. Enzyme Microbial Technol 33:150–153

    Article  CAS  Google Scholar 

  • Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 8:303–319

    Article  Google Scholar 

  • Park SB, Kang HW, Haam S , Park HY, Kim WS (2004) Ca-alginate microspheres encapsulated in chitosan beads. J Microencapsulation 21:485–497

    Article  CAS  Google Scholar 

  • Rhoades J, Roller S (2000) Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 66:80–86

    Article  CAS  Google Scholar 

  • Serp D, Cantana E, Heinzen C, von Stockar U, Marison I W (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization . Biotechnol Bioeng 70:41–53

    Article  CAS  Google Scholar 

  • Smidsrød O, Skjåk-Bræk G, (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  Google Scholar 

  • Takahashi A (1987) Sol-gel transition of ionic polysaccharides. Polym J 36:786–789

    CAS  Google Scholar 

  • Takahashi T, Takayama K, Machida Y, Nagai T (1990) Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm 61:35–41

    Article  CAS  Google Scholar 

  • Thomas WR (1997) Carrageenan. In: Imeson A (eds) Thickening and gelling agents for food, 2nd ed. Chapman & Hall, London, pp 45–59

    Google Scholar 

  • Thu B, Bruheim P, Espevik T, Smidsrød O, SoonShiong P, Skjåk-Bræk G (1996) Alginate polycation microcapsules-I. Interaction between alginate and polycation. Biomaterials 17:1031–1040

    Article  CAS  Google Scholar 

  • Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Delivery Rev 42:29–64

    Article  CAS  Google Scholar 

  • Wen-tao Q, Wei-ting Y, Yu-bing X, Xiaojun M (2005) Optimization of Saccharomyces cerevisiae culture in alginate–chitosan–alginate microcapsule. J Bioch Eng 25:151–157

    Article  CAS  Google Scholar 

  • Wheatley MA, Chang M, Park E, Langer R (1991) Coated alginate microspheres: Factors influencing the controlled delivery of macromolecules. J Appl Polym Sci 43:2123–2135

    Article  CAS  Google Scholar 

  • Yao K, Peng T, Yin Y, Xu M (1995) Chitosan microcapsules and microspheres JMR-Reviews in Macromol Chem Phys C 35:155–180

    Google Scholar 

  • Yokotsuka K, Mizuo Y, Toshihide M (1997) Production of bottle-fermented sparkling wine using yeast immobilized in double-layer gel beads or strands. Am J Enol Vitic 48:471–481

    CAS  Google Scholar 

  • Yu J, Zhang X, Tan T (2007) An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J Biotechnol 129:415–420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Drichoutis.

Additional information

This paper is based on a presentation at the “International Congress on Bioprocesses in Food Industries – ICBF 2006” conference, Patras 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liouni, M., Drichoutis, P. & Nerantzis, E.T. Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J Microbiol Biotechnol 24, 281–288 (2008). https://doi.org/10.1007/s11274-007-9467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-007-9467-7

Keywords

Navigation