Skip to main content
Log in

Development of new tolerant strains to hydrophilic and hydrophobic organic solvents by the yeast surface display methodology

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast surface display is a research methodology based on anchoring functional proteins and peptides onto the surface of the cells of this eukaryotic organism. Its development has resulted in the construction of a good number of new whole-cell biocatalysts with diverse applications in biotechnology, pharmacy, and medicine. In this work, we describe the design of new yeast strains in which several proteins and peptides have been introduced at the N-terminal position of protein agglutinin Aga2p. In all cases, proteins were correctly expressed and displayed on the cell surface according to the western blot, fluorescence microscopy, and fluorescence-activated cell sorting (FACS) analyses. The introduction of a glycosylable, Ser/Thr-rich protein (S1) resulted in improved resistance to ethanol, nonane, and dimethyl sulfoxide (DMSO) stress. The protein with a very high hydrophobic content (S2d) proved to confer tolerance to acetonitrile, ethanol, nonane, salt, and sodium dodecyl sulfate (SDS). The introduction of five leucine residues at the N-terminal position of S1 and S2 resulted in similar or increased resistance to the above-mentioned stress conditions. The adverse effects described in a previous work, when these residues were introduced into the N-terminus of Aga2p, with no other protein acting as a spacer, were not observed. Indeed, these strains grew better in the presence of hydrophilic solvents such as acetonitrile and ethanol. The new strains reported in this work have biotechnological potentiality given their behavior under adverse conditions of interest for biocatalytic and industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreu C, del Olmo M (2013) Yeast arming by the Aga2p system: effect of growth conditions in galactose on the efficiency of the display and influence of expressing leucine-containing peptides. Appl Microbiol Biotechnol 97:9055–9069. doi:10.1007/s00253-013-5086-4

    Article  CAS  PubMed  Google Scholar 

  • Andreu C, del Olmo M (2014) Potential of some yeast strains in the stereoselective synthesis of (R)-(−)-phenylacetylcarbinol and (S)-(+)-phenylacetylcarbinol and their reduced 1,2-dialcohol derivatives. Appl Microbiol Biotechnol 98:5901–5913. doi:10.1007/s00253-014-5635-5

    CAS  PubMed  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357. doi:10.1038/nbt1297-1351

    Article  CAS  PubMed  Google Scholar 

  • Bariotaki A, Kalaitzakis D, Smonou I (2012) Enzymatic reductions for the regio- and stereoselective synthesis of hydroxyketo esters and dihydroxy esters. Org Lett 14:1792–1795. doi:10.1021/ol3003833

    Article  CAS  PubMed  Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. S Afr J Enol Vitic 21:27–51

    CAS  Google Scholar 

  • Blazic M, Kovacevic G, Prodanovic O, Ostafe R, Gavrovic-Jankulovic M, Fischer R, Prodanovic R (2013) Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases. Protein Expr Purif 89:175–180. doi:10.1016/j.pep.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  • Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 6:553–557. doi:10.1038/nbt0697-553

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breinig F, Schmitt MJ (2002) Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 58:637–644. doi:10.1007/s00253-002-0939-2

    Article  CAS  PubMed  Google Scholar 

  • Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–113404. doi:10.1073/pnas.1101046108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cid VJ, Duran A, del Rey F, Snyder MP, Nombela C, Sánchez M (1995) Molecular biology of cell integrity and morphogenesis in S. cerevisiae. Annu Rev Microbiol 59:345–386

    CAS  Google Scholar 

  • Csuk R, Glänzer B (1991) Baker’s yeast mediated transformations in organic chemistry. Chem Rev 91:49–97. doi:10.1021/cr00001a004

    Article  CAS  Google Scholar 

  • Fukuda T, Tsuchiyama K, Makishima H, Takayama K, Mulchandani A, Kuroda K, Ueda M, Suye S (2010) Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system. Biotechnol Lett 32:655–659. doi:10.1007/s10529-010-0204-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han T, Sui J, Bennett AS, Liddington RC, Donis RO, Zhu Q, Marasco WA (2011) Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 inluenza virus using yeast surface display. Biochem Biophys Res Commun 409:253–259. doi:10.1016/j.bbrc.2011.04.139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardwick KG, Boothroyd JC, Rudner AD, Pelham HRB (1992) Genes that allow yeast cells to grow in the absence of the HDEL receptor. EMBO J 11:4187–4195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7:8. doi:10.1186/1754-6834-7-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Jentoft N (1990) Why are proteins O-glycosylated? Trends Biochem Sci 15:161–169

    Article  Google Scholar 

  • Klis FM, Caro LHP, Vossen JH, Kapteyn JC, Ram AFJ, Montijn RC, van Berkel MAA, van der Ende H (1997) Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae. Biochem Soc Trans 25:856–860. doi:10.1042/bst0250856

    Article  CAS  PubMed  Google Scholar 

  • Komentani T, Yoshii H, Matsuno R (1996) Large-scale production of chiral alcohols with bakers’ yeast. J Mol Catal B Enzym 1:45–52. doi:10.1016/1381-1177(95)00014-3

    Article  Google Scholar 

  • Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463. doi:10.1007/s00253-005-0093-8

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9. doi:10.1007/s10529-010-0403-9

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2013) Arming technology in yeast—novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules 3:632–650. doi:10.3390/biom3030632

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719. doi:10.1007/s00253-008-1808-4

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Nishitani T, Ueda M (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–159. doi:10.1007/s00253-012-4069-1

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132. doi:10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  • Lee G-Y, Jung J-H, Seo D-H, Hansin J, Ha S-J, Cha J, Kim Y-S, Park C-S (2011) Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp. FMB-1 on Saccharomyces cerevisiae. Bioresour Technol 9:9179–9184. doi:10.1016/j.biortech.2011.06.081

    Article  Google Scholar 

  • Lin Y, Tsumuraya T, Wakabayashi T, Shiraga S, Fujii I, Kondo A, Ueda M (2003) Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biotechnol 62:226–232. doi:10.1007/s00253-003-1283-x

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Shiraga S, Tsumuraya T, Matsumoto T, Kondo A, Fujii I, Ueda M (2004) Comparison of two forms of catalytic antibody displayed on yeast-cell surface. J Mol Catal B 28:241–246. doi:10.1016/j.molcatb.2003.12.021

    Article  CAS  Google Scholar 

  • Liu X, Zhang X, Zhang Z (2010) Cu, Zn-superoxide dismutase is required for cell wall structure and for tolerance to cell wall-perturbing agents in Saccharomyces cerevisiae. FEBS Lett 584:1245–1250. doi:10.1016/j.febslet.2010.02.039

    Article  CAS  PubMed  Google Scholar 

  • Matano Y, Hasunuma T, Kondo A (2013) Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 135:403–409. doi:10.1016/j.biortech.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Kuroda K, Ueda M (2009) Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl Microbiol Biotechnol 82:105–113. doi:10.1007/s00253-008-1761-2

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522. doi:10.1128/AEM.68.9.4517-4522.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura H, Yamamoto Y, Muraoka M, Akaishi K, Hori Y, Uemura K, Tsuji N, Harada K, Hirata K, Bamba T, Miyasaka H, Kuroda K, Ueda M (2013) Development of surface-engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene-excimer fluorescence. Biotechnol Prog 29:1197–1202. doi:10.1002/btpr.1789

    Article  CAS  PubMed  Google Scholar 

  • Medson C, Smallridge AJ, Trewhella MA (2001) Baker’s yeast activity in an organic solvent system. J Mol Cat B Enz 11:897–903. doi:10.1016/S1381-1177(00)00154-5

    Article  CAS  Google Scholar 

  • Molinari F, Occhiato EG, Aragozzini F, Guarna A (1998) Microbial biotransformation in water/organic solvent system. Enantioselective reduction of aromatic β and γ niroketones. Tetrahedron Asymmetry 9:1389–1394. doi:10.1016/S0957-4166(98)00096-2

    Article  CAS  Google Scholar 

  • Moore JC, Pollard DJ, Kosjek B, Devine PN (2007) Advances in the enzymatic reduction of ketones. Acc Chem Res 40:1412–1419. doi:10.1021/ar700167a

    Article  CAS  PubMed  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51:65–70

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi A, Bae JG, Fukai K, Tokumoto N, Kuroda K, Ogawa J, Nakatani M, Shimizu S, Ueda M (2012) Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl Microbiol Biotechnol 94:939–948. doi:10.1007/s00253-012-3876-8

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Jing D, Kuroda K, Ueda M (2013a) Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae. Curr Genet 60:149–162. doi:10.1007/s00294-013-0419-5

    Article  PubMed  Google Scholar 

  • Nishida N, Ozato N, Matsui K, Kuroda K, Ueda M (2013b) ABC transporters and cell wall proteins involved in organic solvent tolerance in Saccharomyces cerevisiae. J Biotechnol 165:145–152. doi:10.1016/j.biotec.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  • Ota M, Sakuragi H, Morisaka H, Kuroda K, Miyake H, Tamaru Y, Ueda M (2013) Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol Prog 29:346–351. doi:10.1002/btpr.1700

    Article  CAS  PubMed  Google Scholar 

  • Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Fact 7:25. doi:10.1186/1475-2859-7-25

    Article  PubMed  PubMed Central  Google Scholar 

  • Puthenveetil S, Liu DS, White KA, Thompson S, Ting AY (2009) Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. J Am Chem Soc 131:16430–16438. doi:10.1021/ja904596f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206. doi:10.1128/MCB.11.8.4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangster J (1989) Octanol-water partition coefficients of simple organic compounds. J Phys Chem Ref Data 18:1111. doi:10.1063/1.555833

    Article  CAS  Google Scholar 

  • Sato N, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Long anchor using Flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl Microbiol Biotechnol 60:469–474. doi:10.1007/s00253-002-1121-6

    Article  CAS  PubMed  Google Scholar 

  • Schreuder MP, Mooren ATA, Toschka HY, Verrips CT, Klis FM (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol 14:115–120

    Article  CAS  PubMed  Google Scholar 

  • Servi S (1990) Baker’s yeast as a reagent in organic synthesis. Synthesis 1990(1):1–25. doi:10.1055/s-1990-26775

    Article  Google Scholar 

  • Shibasaki S, Ueda M, Ye K, Shimizu K, Kamasawa N, Osumi M, Tanaka A (2001a) Creation of cell surface-engineered yeast that display different fluorescent proteins in response to the glucose concentration. Appl Microbiol Biotechnol 57:528–533. doi:10.1007/s002530100767

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Ninomiya Y, Ueda M, Iwahashi M, Katsuragi T, Tani Y, Harashima S, Tanaka A (2001b) Intelligent yeast strains with the ability to self-monitor the concentrations of intra- and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface. Appl Microbiol Biotechnol 57:702–707. doi:10.1007/s00253-001-0849-8

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Tanaka A, Ueda M (2003) Development of combinatorial bioengineering using yeast cell surface display—order-made design of cell and protein for bio-monitoring. Biosens Bioelectron 19:123–130. doi:10.1016/S0956-5663(03)00169-6

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast-arming technology. Anal Sci 25:41–49. doi:10.2116/analsci.25.41

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Aoki W, Nomura T, Miyoshi A, Tafuku S, Sewaki T, Ueda M (2013) An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 69:262–268. doi:10.1111/2049-632X.12068

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Suye S, Kuroda K, Ueda M, Kitaguchi T, Tsuchiyama K, Fukuda T, Chen W, Mulchandani A (2006) Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 22:939–943. doi:10.1021/bp060107b

    Article  CAS  PubMed  Google Scholar 

  • Tamaru Y, Ohtsuka M, Kato K, Manabe S, Kuroda K, Sanada M, Ueda M (2006) Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol Prog 22:949–953. doi:10.1021/bp060130x

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Yamada R, Ogino C, Kondo A (2012) Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol 95:577–591. doi:10.1007/s00253-012-4175-0

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Matsumoto S, Yamada M, Yamada R, Matsuda F, Kondo A (2013) Display of active β-glucosidase on the surface of Schizosaccharomyces pombe cells using novel anchor proteins. Appl Microbiol Biotechnol 97:4343–4352. doi:10.1007/s00253-013-4733-0

    Article  CAS  PubMed  Google Scholar 

  • Tanino T, Fukuda H, Kondo A (2006) Construction of a Pichia pastoris cell-surface display using Flo1p anchor system. Biotechnol Prog 22:989–993. doi:10.1021/bp060133+

    Article  CAS  PubMed  Google Scholar 

  • Van der Vaart JM, Caro HP, Chapman JW, Klis FM, Verrips CT (1995) Identification of three mannoproteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 177:3104–3110

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermue M, Sikkema J, Verheul A, Bakker R, Tramper J (1993) Toxicity of homologous series of organic solvent for the gram-positive bacteria Arthrobacter and Nocardia sp. and the gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 42:747–758. doi:10.1002/bit.260420610

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Mathias A, Stavrou S, Neville DM Jr (2005) A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Prot Eng Des Sel 18:337–343. doi:10.1093/protein/gzi036

    Article  Google Scholar 

  • Wang Q, Li L, Chen M, Qi Q, Wang PG (2007) Construction of a novel system for cell surface display of heterologous proteins on Pichia pastoris. Biotechnol Lett 29:1561–1566. doi:10.1007/s10529-007-9430-6

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li L, Chen M, Qi Q, Wang PG (2008) Construction of a novel Pichia pastoris cell-surface display system based on the cell wall protein Pir1. Curr Microbiol 56:352–357. doi:10.1007/s00284-007-9089-1

    Article  CAS  PubMed  Google Scholar 

  • Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686. doi:10.1007/s002530100718

    Article  CAS  PubMed  Google Scholar 

  • Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M (2010) Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using α-agglutinin for production of oral vaccines. Biotechnol Prog 26:542–547. doi:10.1002/btpr.343

    CAS  PubMed  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino M, Onnela ML, Airaksinen U, Jaatinen R, Penttilä M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225. doi:10.1002/yea.320100208

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Nakatani Y, Ogino C, Kondo A (2013) Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express 3:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Dang H, Lu JR (2012) Improving genetic immobilization of a cellulose on yeast cell surface for bioethanol production using cellulose. J Basic Microbiol 52:1–9. doi:10.1002/jobm.201100602

    Article  Google Scholar 

  • Yasui M, Shibasaki S, Kuroda K, Ueda M, Kawada N, Nishikawa J, Nishihara T, Tanaka A (2002) An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface. Appl Microbiol Biotechnol 59:329–331. doi:10.1007/s00253-002-1019-3

    Article  CAS  PubMed  Google Scholar 

  • Yuzbasheva EY, Yuzbashev TV, Laptev IA, Konstantinova TK, Sineoky SP (2011) Efficient cell surface display of Lip2 lipase using C-domains of glycosylphosphatidylinositol-anchored cell wall proteins of Yarrowia lipolytica. Appl Microbiol Biotechnol 91:645–654. doi:10.1007/s00253-011-3265-8

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Ueda M, Tanaka A (2002) Screening of a molecule endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl Microbiol Biotechnol 58:806–812. doi:10.1007/s00253-002-0961-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Neville for providing us with the pYD5 plasmid. We gratefully acknowledge SCSIE (Universitat de València) for access to its instrumental facilities of DNA sequencing and flow cytometry. This work has been supported by grant from the Spanish Ministry of Science and Technology BFU2011-23501/BMC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Andreu or M. del Olmo.

Additional information

C. Perpiñá and J. Vinaixa contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perpiñá, C., Vinaixa, J., Andreu, C. et al. Development of new tolerant strains to hydrophilic and hydrophobic organic solvents by the yeast surface display methodology. Appl Microbiol Biotechnol 99, 775–789 (2015). https://doi.org/10.1007/s00253-014-6048-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6048-1

Keywords

Navigation