Skip to main content
Log in

Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A functional hetero-oligomeric protein was, for the first time, displayed on the yeast cell surface. A hetero-oligomeric Fab fragment of the catalytic antibody 6D9 can hydrolyze a non-bioactive chloramphenicol monoester derivative to produce chloramphenicol. The gene encoding the light chain of the Fab fragment of 6D9 was expressed with the tandemly-linked C-terminal half of α-agglutinin. At the same time, the gene encoding the Fd fragment of the heavy chain of the Fab fragment was expressed as a secretion protein. The combined Fab fragment displayed and associated on the yeast cell surface had an intermolecular disulfide linkage between the light and heavy chains. This protein fragment catalyzed the hydrolysis of a chloramphenicol monoester derivative and exhibited high stability in binding with a transition-state analog (TSA). The catalytic reaction was also inhibited by the TSA. The successful display of a functional hetero-oligomeric catalytic antibody provides a useful model for the display of hetero-oligomeric proteins and enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–D.
Fig. 3.
Fig. 4A, B.
Fig. 5.

Similar content being viewed by others

References

  • Adam A, Gottschling DE, Kaiser CA, Stearns T (eds) (1997) Isolation of genomic DNA for Southern blot analysis. In: Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., pp 110–111

  • Boder ET, Wittrup KD (2001) Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 328:431–444

    Google Scholar 

  • Boder ET, Midelfort SK, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97:10701–10705

    Article  PubMed  Google Scholar 

  • Duenas M, Ayala M, Vazquez J, Ohlin M, Soderlind E, Borrenaeck CAK, Gavilondo JV (1995) A point mutation in murine immunoglobulin V-region strongly influences the antibody yield in Escherichia coli. Gene 158:61–66

    Article  PubMed  Google Scholar 

  • Fujii I, Tanaka F, Miyashita H, Tanimura R, Kinoshita K (1995) Correlation between antigen-combining-site structures and functions within a panel of catalytic antibodies generated against a single transition state analog. J Am Chem Soc 117:6199–6209

    CAS  Google Scholar 

  • Fujii I, Fukuyama S, Iwabuchi Y, Tanimura R (1998) Evolving catalytic antibodies in a phage-displayed combinatorial library. Nat Biotechnol 16:463–467

    PubMed  Google Scholar 

  • Horwitz AH, Chamg CP, Better M, Hellstrom KE, Robinson RR (1988) Secretion of functional antibody and Fab fragment from yeast cells. Proc Natl Acad Sci USA 85:8678–8682

    PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  Google Scholar 

  • Ito W, Iba Y, Kurosawa Y (1993) Effects of substitution of closely related amino acids at the contact surface in an antigen-antibody complex on thermodynamic parameters. J Biol Chem 268:16639–16647

    PubMed  Google Scholar 

  • Keike MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310

    Article  PubMed  Google Scholar 

  • Keike MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM (1999) Selection of functional T cell receptor mutants from a yeast surface display library. Proc Natl Acad Sci USA 96:5651–5656

    CAS  PubMed  Google Scholar 

  • Knappik A, Pluckthum A (1995) Engineering turns of a recombinant antibody improve its in vivo folding. Protein Eng 8:81–89

    CAS  PubMed  Google Scholar 

  • Miyashita H, Hara T, Tanimura R, Tanaka F, Kikuchi M, Fujii I (1994) A common ancestry for multiple catalytic antibodies generated against a single transition-state analog. Proc Natl Acad Sci USA 91:6045–6049

    PubMed  Google Scholar 

  • Miyashita H, Hara T, Tanimura R, Fukuyama S, Cagnon C, Kohara A, Fujii I (1997) Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization. J Mol Biol 267:1247–1257

    Article  PubMed  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  PubMed  Google Scholar 

  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    CAS  PubMed  Google Scholar 

  • Pollack SJ, Jacobs JW, Schultz PG (1986) Selective chemical catalysis by an antibody. Science 234:1570–1573

    PubMed  Google Scholar 

  • Schoonjans R, Willwms A, Schoonooghe S, Fiers W, Grooten J, Mertens N (2000) Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J Immunol 165:7050–7057

    PubMed  Google Scholar 

  • Sikorski RS, Hieter PA (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Takahashi N, Kakinuma H, Liu L, Nishi Y, Fujii I (2001) In vitro abzyme evolution to optimize antibody recognition for catalysis. Nat Biotechnol 19:563–567

    Article  PubMed  Google Scholar 

  • Tramontano A, Janda KD, Lemer RA (1986) Catalytic antibodies. Science 234:1566–1570

    PubMed  Google Scholar 

  • Ueda M, Tanaka A (2000a) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    CAS  Google Scholar 

  • Ueda M, Tanaka A (2000b) Cell surface engineering of yeast—construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136

    CAS  Google Scholar 

  • Ulrich HD, Patten PA, Yang PL, Romesberg FE, Schultz PG (1995) Expression studies of catalytic antibodies. Proc Natl Acad Sci USA 92:11907–11911

    PubMed  Google Scholar 

  • Zou W, Ueda M, Murai T, Tanaka A (2000) Establishment of a simple system to analyze the molecular interaction in the agglutination of Saccharomyces cerevisiae. Yeast 16:995–1000

    Article  PubMed  Google Scholar 

  • Zou W, Ueda M, Tanaka A (2002) Screening of an endowing Saccharomyces cerevisiae with n-nonane-tolerance from a combinatorial random protein library. Appl Microbiol Biotechnol 58:806–812

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Tsumuraya, T., Wakabayashi, T. et al. Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Appl Microbiol Biotechnol 62, 226–232 (2003). https://doi.org/10.1007/s00253-003-1283-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1283-x

Keywords

Navigation