Skip to main content
Log in

Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thraustochytrids have recently emerged as a promising source for docosahexaenoic acid (DHA) production due to their high growth rate and oil content. In this study, two thraustochytrid isolates, Aurantiochytrium sp. PKU#SW7 and Thraustochytriidae sp. PKU#Mn16 were used for DHA production. Following growth parameters were optimized to maximize DHA production: temperature, pH, salinity, and glucose concentration. Both isolates achieved the highest DHA yield at the cultivation temperature of 28 °C, pH 6, 100 % seawater, and 2 % glucose. A DHA yield of 1.395 g/l and 1.426 g/l was achieved under the optimized culture conditions. Further investigation revealed that both isolates possess simple fatty acids profiles with palmitic acid and DHA as their dominant constituents, accounting for ∼79 % of total fatty acids. To date, very few studies have focused on the DHA distribution in various lipid fractions which is an important factor for identifying strains with a potential for industrial DHA production. In the present study, the lipids profiles of each strain both revealed that the majority of DHA was distributed in neutral lipids (NLs), and the DHA distribution in NLs of PKU#SW7 was exclusively in the form of triacylglycerols (TAGs) which suggest that PKU#SW7 could be utilized as an alternative source of DHA for dietary supplements. The fermentation process established for both strains also indicating that Aurantiochytrium sp. PKU#SW7 was more suitable for cultivation in fermenter. In addition, the high percentage of saturated fatty acids produced by the two thraustochytrids indicates their potential application in biodiesel production. Overall, our findings suggest that two thraustochytrid isolates are suitable candidates for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoki H, Miyamoto N, Furuya Y, Mankura M, Endo Y, Fujimoto K (2002) Incorporation and accumulation of docosahexaenoic acid from the medium by Pichia methanolica HA-32. Biosci Biotechnol Biochem 66(12):2632–2638

    Article  CAS  PubMed  Google Scholar 

  • Arafiles K, Alcantara J, Batoon J, Galura F, Cordero P, Leaño E, Dedeles G (2011) Cultural optimization of thraustochytrids for biomass and fatty acid production. Mycosphere 2:521–531

    Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991a) Production of docosahexaenoic acid by Thraustochytrium Aureum. Appl Microbiol Biotechnol 35(6):706–710

    CAS  Google Scholar 

  • Bajpai PK, Bajpai P, Ward OP (1991b) Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium Aureum ATCC 34304. J Am Oil Chem Soc 68(7):509–514

    Article  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe (III) reduction. Int J Syst Bacteriol 47(4):1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6 omega 3). Int J Syst Bacteriol 48:1171–1180

    Article  CAS  Google Scholar 

  • Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72(6):1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Burja AM, Armenta RE, Radianingtyas H, Barrow CJ (2007) Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18. J Agric Food Chem 55(12):4795–4801

    Article  CAS  PubMed  Google Scholar 

  • Chang KJL, Dunstan GA, Abell GCJ, Clementson LA, Blackburn SI, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93(5):2215–2231

    Article  CAS  Google Scholar 

  • Chatdumrong W, Yongmanitchai W, Limtong S, Worawattanamateekul W (2007) Optimization of docosahexaenoic acid (DHA) production and improvement of astaxanthin content in a mutant Schizochytrium limacinum isolated from mangrove forest in Thailand. Nat Sci 41:324–334

    CAS  Google Scholar 

  • Cheng JJ (2010) Biomass to renewable energy processes. CRC Press, Boca Raton

    Google Scholar 

  • Damare V, Raghukumar S (2006) Morphology and physiology of the marine straminipilan fungi, the aplanochytrids isolated from the equatorial Indian Ocean. Indian J Mar Sci 35(4):326–340

    Google Scholar 

  • Fan KW, Chen F, Jones EBG, Vrijmoed LLP (2001) Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids. J Ind Microbiol Biotechnol 27(4):199–202

    Article  CAS  PubMed  Google Scholar 

  • Fan KW, Vrijmoed LLP, Jones EBG (2002) Physiological studies of subtropical mangrove thraustochytrids. Bot Mar 45(1):50–57

    Article  Google Scholar 

  • Fan KW, Jiang Y, Faan YW, Chen F (2007) Lipid characterization of mangrove thraustochytrid—Schizochytrium mangrovei. J Agric Food Chem 55(8):2906–2910

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Huang JZ, Aki T, Hachida K, Yokochi T, Kawamoto S, Shigeta S, Ono K, Suzuki O (2001) Profile of polyunsaturated fatty acids produced by Thraustochytrium sp. KK17-3. J Am Oil Chem Soc 78(6):605–610

    Article  CAS  Google Scholar 

  • Huang JZ, Aki T, Yokochi T, Nakahara T, Honda D, Kawamoto S, Shigeta S, Ono K, Suzuki O (2003) Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar Biotechnol 5(5):450–457

    Article  CAS  PubMed  Google Scholar 

  • Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol 123:8–14

    Article  CAS  PubMed  Google Scholar 

  • Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81(1):76–78

    Article  CAS  Google Scholar 

  • Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137(4):855–859

    CAS  PubMed  Google Scholar 

  • Jain R, Raghukumar S, Chandramohan D (2004) Enhanced production of polyunsaturated fatty acid docosahexaenoic acid by thraustochytrid protists. Mar Biotechnol 6:S59–S65p

    Google Scholar 

  • Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34(6–7):633–637

    Article  CAS  Google Scholar 

  • Jiang Y, Fan KW, Wong RDY, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem 52(5):1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Kendrick A, Ratledge C (1992) Lipids of selected molds grown for production of n−3 and n−6 polyunsaturated fatty acids. Lipids 27(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Fukuba T, Naganuma T (1999) Biomass of thraustochytrid protoctists in coastal water. Mar Ecol Prog Ser 189:27–33

    Article  CAS  Google Scholar 

  • Kralovec JA, Zhang SC, Zhang W, Barrow CJ (2012) A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem 131(2):639–644

    Article  CAS  Google Scholar 

  • Leaño EM, Gapasin RSJ, Polohan B, Vrijmoed LLP (2003) Growth and fatty acid production of thraustochytrids from Panay mangroves, Philippines. Fungal Divers 12:111–122

    Google Scholar 

  • Linko Y-Y, Hayakawa K (1996) Docosahexaenoic acid: a valuable nutraceutical? Trends Food Sci Technol 7(2):59–63

    Article  CAS  Google Scholar 

  • Liu J, Sommerfeld M, Hu Q (2013a) Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Appl Microbiol Biotechnol 97(11):4785–4798

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Singh P, Sun Y, Luan S, Wang G (2013b) Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biotechnol 98(7):3241–3255

    Article  PubMed  Google Scholar 

  • Masson S, Latini R, Tacconi M, Bernasconi R (2007) Incorporation and washout of n-3 polyunsaturated fatty acids after diet supplementation in clinical studies. J Cardiovasc Med 8:S4–S10

    Article  Google Scholar 

  • Miller MR, Nichols PD, Carter CG (2008) n-3 Oil sources for use in aquaculture-alternatives to the unsustainable harvest of wild fish. Nutr Res Rev 21(02):85–96

    Article  CAS  PubMed  Google Scholar 

  • Min KH, Lee HH, Anbu P, Chaulagain BP, Hur BK (2012) The effects of culture condition on the growth property and docosahexaenoic acid production from Thraustochytrium aureum ATCC 34304. Korean J Chem Eng 29(9):1211–1215

    Article  CAS  Google Scholar 

  • Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D (1996) Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap islands. J Am Oil Chem Soc 73(11):1421–1426

    Article  CAS  Google Scholar 

  • Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28(3):197–202

    Article  CAS  PubMed  Google Scholar 

  • Pinkart HC, Devereux R, Chapman PJ (1998) Rapid separation of microbial lipids using solid phase extraction columns. J Microbiol Methods 34(1):9–15

    Article  CAS  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38(2):127–145

    Article  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Mar Biotechnol 10(6):631–640

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54(1):3–11

    Article  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77(2):198–208

    Article  CAS  PubMed  Google Scholar 

  • Ryu B-G, Kim K, Kim J, Han J-I, Yang J-W (2013) Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour Technol 129:351–359

    Article  CAS  PubMed  Google Scholar 

  • Santangelo G, Bongiorni L, Pignataro L (2000) Abundance of thraustochytrids and ciliated protozoans in a Mediterranean sandy shore determined by an improved, direct method. Aquat Microb Ecol 23(1):55–61

    Article  Google Scholar 

  • Scott SD, Armenta RE, Berryman KT, Norman AW (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol 48(3):267–272

    Article  CAS  PubMed  Google Scholar 

  • Sijtsma L, Swaaf ME (2004) Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64(2):146–153

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Wilson S, Ward OP (1996) Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892. World J Microbiol Biotechnol 12(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Swaaf M, Pronk J, Sijtsma L (2003) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61(1):40–43

    Article  PubMed  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2011) Effects of cold shock treatment on total lipid content and fatty acid composition of Aurantiochytrium limacinum strain mh0186. J Oleo Sci 60(5):217–220

    Article  CAS  PubMed  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128(3):219–240

    Article  CAS  Google Scholar 

  • Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J (2006) n-3 Fatty acids from fish or fish-oil supplements, but not α-linolenic acid, benefit cardiovascular disease outcomes in primary-and secondary-prevention studies: a systematic review. Am J Clin Nutr 84(1):5–17

    CAS  PubMed  Google Scholar 

  • Ward O (1995) Microbial production of long-chain PUFAs. Inform 6:683–688

    Google Scholar 

  • Wong MKM, Tsui CKM, Au DWT, Vrijmoed LLP (2008) Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience 49(4):266–270

    Article  CAS  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74(11):1431–1434

    Article  CAS  Google Scholar 

  • Yamasaki T, Aki T, Mori Y, Yamamoto T, Shinozaki M, Kawamoto S, Ono K (2007) Nutritional enrichment of larval fish feed with thraustochytrid producing polyunsaturated fatty acids and xanthophylls. J Biosci Bioeng 104(3):200–206

    Article  CAS  PubMed  Google Scholar 

  • Yang HL, Lu CK, Chen SF, Chen YM (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12(2):173–185

    Article  CAS  PubMed  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49(1):72–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by State Ocean Administration Grant 1523, Shenzhen Development and Reform Commission grant 835 and a Key Project of Shenzhen Emerging Industries (No. JC201104210118A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maurycy Daroch or Jay J. Cheng.

Additional information

Ying Liu and Jie Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tang, J., Li, J. et al. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists. Appl Microbiol Biotechnol 98, 9643–9652 (2014). https://doi.org/10.1007/s00253-014-6032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6032-9

Keywords

Navigation