Skip to main content

Advertisement

Log in

Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thraustochytrids are ubiquitous marine osmo-heterotrophic fungi-like microorganisms with only about 40 identified species till now. In this study, a total of 60 thraustochytrid strains were isolated from marine coastal habitats. Analysis of 18S rRNA gene sequences revealed that they belonged to three genera, i.e., Schizochytrium, Aurantiochytrium, and Thraustochytrium. All of the isolates were found to show considerable cellulolytic and lipolytic activities. Strains of Aurantiochytrium sp. and Thraustochytrium sp. were found to produce the highest levels of extracellular polysaccharides (EPS), which reached 345 μg ml−1 in the growth media. Fourier transform infrared (FTIR) spectra of the EPS samples derived from two thraustochytrids (PKU#Sed1 and #SW1) displayed peaks for carbohydrates, proteins, lipids, uronic acids, and nucleic acids. Fatty acid profiles of four thraustochytrids comprised of palmitic acid (C16:0) and docosahexaenoic acid (DHA) as their major constituents. Schizochytrium sp. demonstrated the highest DHA production at 44 % of total fatty acids (TFA) with biomass and DHA yield of 7.1 and 1.6 g l−1, respectively, on the fourth day of growth. All the four isolates exhibited considerable production of palmitic acid (16:0) in their fatty acid profiles ranging from 35 to 50 % TFA. This is the first report on extracellular enzymes, EPS, and DHA production from thraustochytrids isolated from the coastal habitats of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Arafiles K, Alcantara J, Batoon J, Galura F, Cordero P, Leaño E, Dedeles G (2011) Cultural optimization of thraustochytrids for biomass and fatty acid production. Mycosphere 2:521–531

    Google Scholar 

  • Bajpai P, Bajpai PK, Ward OP (1991) Production of docosahexaenoic acid by Thraustochytrium aureum. Appl Microbiol Biotechnol 35:706–710

    Article  CAS  Google Scholar 

  • Benner R, Moran MA, Hodson RE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of prokaryotes and eukaryotes. Limnol Oceanogr 31:89–100

    Article  Google Scholar 

  • Bhosle NB, Garg A, Sawant SS, Wagh A (1995) Isolation and partial chemical analysis of exopolysaccharides from the marine fouling diatom Navicula subinflata. Bot Mar 38:103–110

    Article  CAS  Google Scholar 

  • BoekeMa B, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J (2007) Hexadecane and Tween 80 stimulate lipase production in Burkholdetia glumae by different mechanisms. Appl Environ Microbiol 73(12):3838–3844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bongiorni L, Pignataro L, Santangelo G (2004) Thraustochytrids (fungoid protists): an unexplored component of marine sediment microbiota. Sci Mar 68:43–48

    CAS  Google Scholar 

  • Bongiorni L, Jain R, Raghukumar S, Aggarwal RK (2005a) Thraustochytrium gaertnerium sp. nov.: a new thraustochytrid stramenopilan protist from mangroves of Goa, India. Protist 156(3):303–315

    Article  PubMed  Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005b) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  • Bramono K, Yarnazaki M, Tsuboi R, Ogawa H (2006) Comparison of proteinase, lipase and alpha-glucosidase activities from the clinical isolates of Candida species. Jpn J Infect Dis 59(2):73–76

    PubMed  CAS  Google Scholar 

  • Bremer GB (1976) The ecology of marine lower fungi. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 313–333

    Google Scholar 

  • Bremer GB, Talbot G (1995) Cellulolytic enzyme-activity in the marine protist Schizochytrium aggregatum. Bot Mar 38(1):37–41

    CAS  Google Scholar 

  • Carder JH (1986) Detection and quantitation of cellulase by congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 153(1):75–79

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T, Allsopp M, Chao EE (1994) Thraustochytrids are chromists, not fungi: 18S rRNA signatures of Heterokonta. Philos Trans R Soc Lond Ser B Biol Sci 346(1318):387–397

    Article  CAS  Google Scholar 

  • Damare V, Raghukumar S (2006) Morphology and physiology of the marine straminipilan fungi, the aplanochytrids isolated from the equatorial Indian Ocean. Indian J Mar Sci 35(4):326–340

    Google Scholar 

  • Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S (2006) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzyme Microb Technol 39(2):172–181

    Article  CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environment: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Decho AW (1993) Methods for the observation and use in feeding experiments of microbial exopolymer. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Chelsea, pp 685–694

    Google Scholar 

  • Dighton J (2003) The role of fungi in ecosystem processes. Marcel Dekker, New York

    Book  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Eriksson KE, Hamp SG (1978) Regulation of Endo-1,4-β-glucanase production in Sporotrichum pulverulentum. Eur J Biochem 90(1):183–190

    Article  PubMed  CAS  Google Scholar 

  • Fan KW, Vrijmoed LLP, Jones EBG (2002) Physiological studies of subtropical mangrove thraustochytrids. Bot Mar 45(1):50–57

    Article  Google Scholar 

  • Fisher L, Nicholls D, Sanderson K (2008) Production of biodiesel. World Intellect Prop Organ 067605

  • Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    PubMed  CAS  Google Scholar 

  • Gaertner A (1968) Eine Methode des quantitativen Nachweises niederer mit Pollen koederbarer Pilze im Meerwasser und im Sediment. Verӧff Inst Meeresforsch Bremerh 3:75–92

    Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol 100:965–973

    Article  CAS  Google Scholar 

  • Gupta N, Rathi P, Gupta R (2002) Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal Biochem 311(1):98–99

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez A, Martinez AT, Prieto A (1996) Structural characterization of extracellular polysaccharides produced by fungi from the genus Pleurotus. Carbohydr Res 281:143–154

    Article  PubMed  CAS  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46(6):637–647

    Article  PubMed  CAS  Google Scholar 

  • Huang JZ, Aki T, Yokochi T, Nakahara T, Honda D, Kawamoto S, Shigeta S, Ono K, Suzuki O (2003) Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar Biotechnol 5(5):450–457

    Article  PubMed  CAS  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16(9):396–403

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Raghukumar S, Sambaiah K, Kumon Y, Nakahara T (2007) Docosahexaenoic acid accumulation in thraustochytrids: search for the rationale. Mar Biol 151(5):1657–1664

    Article  CAS  Google Scholar 

  • Jakobsen AN, Aasen IM, Josefsen KD, Strøm AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306

    Article  PubMed  CAS  Google Scholar 

  • Kamlangdee N, Fan KW (2003) Polyunsaturated fatty acids production by Schizochytrium sp. isolated from mangrove. J Sci Technol 25:643–650

    CAS  Google Scholar 

  • Kanchana R, Muraleedharan UD, Raghukumar S (2011) Alkaline lipase activity from the marine protists, thraustochytrids. World J Microb Biotechnol 27(9):2125–2131

    Article  CAS  Google Scholar 

  • Kinsella JE (1987) Seafoods and fish oils in human health and disease. Marcel Dekker, New York

    Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  CAS  Google Scholar 

  • Leander CA, Porter D, Leander BS (2004) Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota). Eur J Protistol 40(4):317–328

    Article  Google Scholar 

  • Lee Chang KJ, Dunstan GA, Abell GC, Clementson LA, Blackburn SI, Nichols PD, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93:2215–2231

    Article  PubMed  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  PubMed  CAS  Google Scholar 

  • Li ZY, Ward OP (1994) Production of docosahexaenoic acid by Thraustochytrium roseum. J Ind Microbiol 13:238–241

    Article  PubMed  CAS  Google Scholar 

  • Lima VMG, Krieger N, Sarquis MIM, Mitchell DA, Ramos LP, Fontana JD (2003) Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technol Biotechnol 41(2):105–110

    CAS  Google Scholar 

  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16

    Article  PubMed  CAS  Google Scholar 

  • Monyem A, Canakci M, Van Gerpen JH (2000) Investigation of biodiesel thermal stability under simulated in-use conditions. Appl Eng Agric 16:373–378

    Article  Google Scholar 

  • Myklestad SM, Haug A (1972) Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. II. Preliminary investigation of the extracellular polysaccharide. J Exp Mar Biol Ecol 9:137–144

    Article  CAS  Google Scholar 

  • Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Mar Biotechnol 13(2):133–136

    Article  PubMed  CAS  Google Scholar 

  • Newell SY, Fell JW (1982) Mycoflora of turtlegrass (Thalassia testudinum Konig) as recorded after seawater incubation. Bot Mar 23:265–275

    Google Scholar 

  • Pinsirodom P, Parkin KL (2001) Lipase assays. Current protocols in food analytical chemistry. Wiley, New York

    Google Scholar 

  • Porter D (1990) Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman D (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 388–398

    Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38(2):127–145

    Article  Google Scholar 

  • Raghukumar S, Damare VS (2011) Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems. Bot Mar 54:3–11

    Article  Google Scholar 

  • Raghukumar S, Raghukumar C (1999) Thraustochytrid fungoid protists in faecal pellets of the tunicate Pegea confoederata, their tolerance to deep-sea conditions and implication in degradation processes. Mar Ecol Prog Ser 190:133–140

    Article  Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of the leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Article  Google Scholar 

  • Raghukumar S, Sathepathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. III. Field studies on decomposition of leaves of the mangrove Rhizophora apiculata. Aquat Microb Ecol 9(2):117–125

    Article  Google Scholar 

  • Raghukumar S, Anil AC, Khandeparkar L, Patil JS (2000) Thraustochytrid protists as a component of marine microbial films. Mar Biol 136:603–609

    Article  Google Scholar 

  • Rajan A, Kumar DRS, Nair AJ (2011) Isolation of a novel alkaline lipase producing fungus Aspergillus fumigatus MTCC 9657 from aged and crude rice bran oil and quantification by HPTLC. Int J Biol Chem 5:116–126

    Article  CAS  Google Scholar 

  • Sathe-pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of the brown alga Sargassum cinereum. J Agric Ind J Mar Sci 22(3):159–167

    CAS  Google Scholar 

  • Sharma S, Raghukumar C, Raghukumar S, Sathe-pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus II. Laboratory studies on decomposition of the brown alga Sargassum cinereum. J Agric J Exp Mar Biol Ecol 175(2):227–242

    Article  Google Scholar 

  • Sheng G, Yu H, Wang C (2006) FTIR-spectctral analysis of two photosynthetic H2-producing strains and their extracellular polymeric substances. Appl Microbiol Biotechnol 73:204–210

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos AP (1989) Summary of the NATO advanced research workshop on dietary omega 3 and omega 6 fatty acids: biological effects and nutritional essentiality. J Nutr 119:521–528

    PubMed  CAS  Google Scholar 

  • Singh A, Wilson S, Ward OP (1996) Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892. World J Microbiol Biotechnol 12:76–81

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Gupta N, Goswami VK, Gupta R (2006) A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol 70(6):679–682

    Article  PubMed  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases—production, applications and challenges. J Sci Ind Res 64(11):832–844

    CAS  Google Scholar 

  • Sutherland IW (1985) Biosynthesis and composition of gram negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol 39:243–270

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Article  PubMed  CAS  Google Scholar 

  • Takahata K, Monobe KI, Tada M, Weber PC (1998) The benefits and risks of n-3 polyunsaturated fatty acids. Biosci Biotechnol Biochem 62:2079–2085

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Extracellular enzymes produced by marine eukaryotes, thraustochytrids. Biosci Biotechnol Biochem 73(1):180–182

    Article  PubMed  CAS  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2011) Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. J Biosci Bioeng 111:420–424

    Article  PubMed  CAS  Google Scholar 

  • Than PP, Del Castillo CS, Yoshikawa T, Sakata T (2004) Extracellular protease production of bacteriolytic bacteria isolated from marine environments. Fish Sci 70(4):659–666

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tsui CKM, Marshall W, Yokoyama R, Honda D, Lippmeier JC, Craven KD, Peterson PD, Berbee ML (2009) Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Mol Phylogenet Evol 50(1):129–140

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Baldaufrid SL, Doolittle WF, Meyerid A (2000) An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances. J Mol Evol 51(6):565–576

    Article  PubMed  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420

    Article  PubMed  CAS  Google Scholar 

  • Wilkens SL, Maas EW (2012) Development of a novel technique for axenic isolation and culture of thraustochytrids from New Zealand marine environments. J Appl Microbiol 112(2):346–352

    Article  PubMed  CAS  Google Scholar 

  • Williams AG, Wimpenny JWT (1977) Exopolysaccharide production by Pseudomonas NCIB 11264 grown in batch culture. J Gen Microbiol 102:13–21

    Article  PubMed  CAS  Google Scholar 

  • Williams AG, Wimpenny JWT (1978) Exopolysaccharide production by Pseudomonas NCIB 11264 grown in continuous culture. J Gen Microbiol 104:47–57

    Article  PubMed  CAS  Google Scholar 

  • Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    Article  CAS  Google Scholar 

  • Yang HL, Lu CK, Chen SF, Chen YM (2010) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12(2):173–185

    Article  PubMed  CAS  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by National Science Foundation of China grant 31170109 (GYW) and Shenzhen Development and Reform Commission grant 835 (GYW). Members of Shenzhen Key Lab of Nano-Micro Material Research, Peking University, are acknowledged for their technical support during FTIR analysis of EPS samples. All the authors are thankful to the Shenzhen Marine environment and resource monitoring center for the facilities extended during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyi Wang.

Additional information

Y. Liu and P. Singh contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Singh, P., Sun, Y. et al. Culturable diversity and biochemical features of thraustochytrids from coastal waters of Southern China. Appl Microbiol Biotechnol 98, 3241–3255 (2014). https://doi.org/10.1007/s00253-013-5391-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5391-y

Keywords

Navigation