Skip to main content
Log in

Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The wetlands and salt flats of the Central Andes region are unique extreme environments as they are located in high-altitude saline deserts, largely influenced by volcanic activity. Environmental factors, such as ultraviolet (UV) radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions, resemble the early Earth and potentially extraterrestrial conditions. The discovery of modern microbialites and microbial mats in the Central Andes during the past decade has increased the interest in this area as an early Earth analog. In this work, we review the current state of knowledge of Central Andes region environments found within lakes, small ponds or puquios, and salt flats of Argentina, Chile, and Bolivia, many of them harboring a diverse range of microbial communities that we have termed Andean Microbial Ecosystems (AMEs). We have integrated the data recovered from all the known AMEs and compared their biogeochemistry and microbial diversity to achieve a better understanding of them and, consequently, facilitate their protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alonso RN, Rojas W (2020) Origin and evolution of the Central Andes: deserts, salars, lakes, and volcanoes. In: Farías ME (ed) Microbial ecosystems in Central Andes extreme environments: biofilms, microbial mats, microbialites and endoevaporites. Springer International Publishing, Cham, pp 3–19

    Chapter  Google Scholar 

  2. Farías ME, Villafañe PG, Lencina AI (2020) Integral prospection of Andean Microbial Ecosystem Project. In: Farías ME (ed) Microbial ecosystems in Central Andes extreme environments: biofilms, microbial mats, microbialites and endoevaporites. Springer International Publishing, Cham, pp 245–260

    Chapter  Google Scholar 

  3. Farías ME, Saona Acuña LA (2020) Modern microbial mats and endoevaporite systems in Andean lakes: a general approach. In: Farías ME (ed) Microbial ecosystems in Central Andes extreme environments: biofilms, microbial mats, microbialites and endoevaporites. Springer International Publishing, Cham, pp 21–33

    Chapter  Google Scholar 

  4. Ercilla O (2018) Origen and evolution of gypsum stromatolites in salars of the Andes highlands, northern Chile. Andean Geol 46:211–222. https://doi.org/10.5027/andgeoV46n1-3029

    Article  Google Scholar 

  5. Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (2009) Saline lakes around the world: unique systems with unique values, 10th ISSLR conference and 2008 FRIENDS of Great Salt Lake forum, May 11-16, 2008, University of Utah, Salt Lake City. Nat Resourc Environ Issues 15:1

    Google Scholar 

  6. McGenity TJ, Oren A (2012) Hypersaline environments. In: Life at extremes: environments, organisms and strategies for survival 402–437

  7. Jones EG (2018) Shallow transient liquid water environments on present-day mars, and their implications for life. Acta Astronautica 146:144–150. https://doi.org/10.1016/j.actaastro.2018.02.027

    Article  Google Scholar 

  8. Demergasso C, Chong G, Galleguillos P et al (2003) Tapetes microbianos del Salar de Llamará, norte de Chile. Rev Chil Hist Nat 76:485–499

    Article  Google Scholar 

  9. Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poiré DG, Novoa F, Visscher PT (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–329

    Article  Google Scholar 

  10. Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8:e53497. https://doi.org/10.1371/journal.pone.0053497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farias ME, Rasuk MC, Gallagher KL, Contreras M, Kurth D, Fernandez AB, Poiré D, Novoa F, Visscher PT (2017) Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS One 12:e0186867. https://doi.org/10.1371/journal.pone.0186867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rascovan N, Maldonado J, Vazquez MP, Eugenia Farías M (2016) Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. ISME J 10:299–309. https://doi.org/10.1038/ismej.2015.109

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez AB, Rasuk MC, Visscher PT, Contreras M, Novoa F, Poire DG, Patterson MM, Ventosa A, Farias ME (2016) Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol 7:1284. https://doi.org/10.3389/fmicb.2016.01284

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rasuk MC, Ferrer GC, Moreno JR et al (2016) The diversity of microbial extremophiles. Mol Div Environ Prokaryotes:87–126

  15. Rasuk MC, Ferrer GM, Kurth D, Portero LR, Farías ME, Albarracín VH (2017) UV-resistant Actinobacteria from high-altitude Andean lakes: isolation, characterization and antagonistic activities. Photochem Photobiol 93:865–880. https://doi.org/10.1111/php.12759

    Article  CAS  PubMed  Google Scholar 

  16. Albarracín VH, Gärtner W, Farias ME (2016) Forged under the sun: life and art of extremophiles from Andean lakes. Photochem Photobiol 92:14–28. https://doi.org/10.1111/php.12555

    Article  CAS  PubMed  Google Scholar 

  17. Gomez FJ, Kah LC, Bartley JK, Astini RA (2014) Microbialites in a high-altitude Andean lake: multiple controls on carbonate precipitation and lamina accretion. Palaios 29:233–249. https://doi.org/10.2110/palo.2013.049

  18. Marshall KC, Characklis WG, Filip Z et al (2012) Microbial adhesion and aggregation: report of the Dahlem Workshop on Microbial Adhesion and Aggregation Berlin 1984, January 15–20. Springer Science & Business Media

  19. Prieto-Barajas CM, Valencia-Cantero E, Santoyo G (2018) Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electron J Biotechnol 31:48–56. https://doi.org/10.1016/j.ejbt.2017.11.001

    Article  Google Scholar 

  20. Franks J, Stolz JF (2009) Flat laminated microbial mat communities. Earth-Sci Rev 96:163–172. https://doi.org/10.1016/j.earscirev.2008.10.004

    Article  CAS  Google Scholar 

  21. Stivaletta N, Barbieri R (2009) Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J Arid Environ 73:33–39. https://doi.org/10.1016/j.jaridenv.2008.09.024

    Article  Google Scholar 

  22. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev 96:141–162. https://doi.org/10.1016/j.earscirev.2008.10.005

    Article  CAS  Google Scholar 

  23. Riding RE, Awramik SM (2000) Microbial sediments. Springer, Berlin

    Book  Google Scholar 

  24. Gallagher K, Dupraz C, Braissant O, et al (2010) Mineralization of sedimentary biofilms: modern mechanistic insights. Biofilm: formation, development and properties. Nova Science Publishers

  25. Braissant O, Decho AW, Dupraz C et al (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411. https://doi.org/10.1111/j.1472-4669.2007.00117.x

    Article  CAS  Google Scholar 

  26. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438. https://doi.org/10.1016/j.tim.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  27. Glunk C, Dupraz C, Braissant O et al (2011) Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas): microbially mediated carbonate precipitation. Sedimentology 58:720–736. https://doi.org/10.1111/j.1365-3091.2010.01180.x

    Article  Google Scholar 

  28. Walter MR (1976) Stromatolites. Elsevier

  29. Burne RV, Moore LS (1987) Microbialites; organosedimentary deposits of benthic microbial communities. Palaios 2:241–254. https://doi.org/10.2307/3514674

    Article  Google Scholar 

  30. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718. https://doi.org/10.1038/nature04764

    Article  CAS  PubMed  Google Scholar 

  31. Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc Lond Ser B Biol Sci 361:869–885. https://doi.org/10.1098/rstb.2006.1834

    Article  CAS  Google Scholar 

  32. Nutman AP, Bennett VC, Friend CRL, van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538. https://doi.org/10.1038/nature19355

    Article  CAS  PubMed  Google Scholar 

  33. Kasting JF (1991) Box models for the evolution of atmospheric oxygen: an update. Glob Planet Chang 97:125–131

    Article  CAS  Google Scholar 

  34. Holland, D H (1994) Early Proterozoic atmospheric change. Early Life in Earth

  35. Riding R (2011) Microbialites, stromatolites, and thrombolites. In: Encyclopedia of Geobiology, Springer, pp 635-654. https://doi.org/10.1007/978-1-4020-9212-1_196

  36. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 21–51

    Chapter  Google Scholar 

  37. Dupraz C, Strasser A (1999) Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura mountains). Facies 40:101–129. https://doi.org/10.1007/BF02537471

    Article  Google Scholar 

  38. Monty C (1977) Evolving concepts on the nature and the ecological significance of stromatolites. Fossil algae. Springer, Berlin Heidelberg, pp 15–35

    Chapter  Google Scholar 

  39. Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015. https://doi.org/10.1139/e79-088

    Article  Google Scholar 

  40. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992. https://doi.org/10.1038/35023158

    Article  CAS  PubMed  Google Scholar 

  41. Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research 67(3):378–390. https://doi.org/10.1306/D4268577-2B26-11D7-8648000102C1865D1865D

  42. Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995. https://doi.org/10.1130/0091-7613(1990)018<0995:cpogca>2.3.co;2

    Article  CAS  Google Scholar 

  43. Sanz Montero ME, Rodríguez Aranda JP (2008) Participación microbiana en la formación de magnesita dentro de un ambiente lacustre evaporítico: Mioceno de la Cuenca de Madrid. Macla:231–232

  44. Rothschild LJ, Giver LJ, White MR, Mancinelli RL (1994) Metabolic activity of microorganisms in evaporites. J Phycol 30:431–438. https://doi.org/10.1111/j.0022-3646.1994.00431.x

  45. Spear JR, Ley RE, Berger AB, Pace NR (2003) Complexity in natural microbial ecosystems: the Guerrero Negro experience. Biol Bull 204:168–173. https://doi.org/10.2307/1543553

    Article  CAS  PubMed  Google Scholar 

  46. Canfield DE, Sorensen KB, Oren A (2004) Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2:133–150. https://doi.org/10.1111/j.1472-4677.2004.00029.x

    Article  CAS  Google Scholar 

  47. Bąbel M (2004) Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol Pol

  48. Stivaletta N, López-García P, Boihem L, Millie DF, Barbieri R (2010) Biomarkers of endolithic communities within gypsum crusts (Southern Tunisia). Geomicrobiol J 27:101–110. https://doi.org/10.1080/01490450903410431

    Article  CAS  Google Scholar 

  49. Haferburg G, Gröning JAD, Schmidt N, Kummer NA, Erquicia JC, Schlömann M (2017) Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia. Microbiol Res 199:19–28. https://doi.org/10.1016/j.micres.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  50. dC Rubin SS, Marín I, Gómez MJ et al (2017) Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat. Environ Microbiol 19:3745–3754. https://doi.org/10.1111/1462-2920.13876

    Article  CAS  PubMed  Google Scholar 

  51. Ramos-Barbero MD, Martínez JM, Almansa C, Rodríguez N, Villamor J, Gomariz M, Escudero C, Rubin SC, Antón J, Martínez-García M, Amils R (2019) Prokaryotic and viral community structure in the singular chaotropic salt lake Salar de Uyuni. Environ Microbiol 21:2029–2042. https://doi.org/10.1111/1462-2920.14549

    Article  PubMed  Google Scholar 

  52. Fleming ED, Prufert-Bebout L (2010) Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes: high-elevation Andes Cyanobacteria. J Geophys Res 115. https://doi.org/10.1029/2008jg000817

  53. Cabrol NA, Grin EA, Zippi P et al (2018) Chapter 6 - Evolution of altiplanic lakes at the Pleistocene/Holocene transition: a window into early Mars declining habitability, changing habitats, and biosignatures. In: Cabrol NA, Grin EA (eds) From Habitability to Life on Mars. Elsevier, pp 153–177

  54. Dorador C, Busekow A, Vila I, Imhoff JF, Witzel KP (2008) Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile. Extremophiles 12:405–414. https://doi.org/10.1007/s00792-008-0146-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dorador C, Vila I, Witzel K-P, Imhoff JF (2013) Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam Appl Limnol 182:135–159. https://doi.org/10.1127/1863-9135/2013/0393

    Article  CAS  Google Scholar 

  56. Rasuk MC, Fernández AB, Kurth D, Contreras M, Novoa F, Poiré D, Farías ME (2016) Bacterial diversity in microbial mats and sediments from the Atacama desert. Microb Ecol 71:44–56. https://doi.org/10.1007/s00248-015-0649-9

    Article  CAS  PubMed  Google Scholar 

  57. Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F, Poire D, Farias ME (2014) Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert. Microb Ecol 68:483–494. https://doi.org/10.1007/s00248-014-0431-4

    Article  CAS  PubMed  Google Scholar 

  58. Engel AS, Johnson LR, Porter ML (2013) Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. FEMS Microbiol Ecol 83:745–756. https://doi.org/10.1111/1574-6941.12030

    Article  CAS  PubMed  Google Scholar 

  59. Ruff SW, Farmer JD (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat Commun 7:13554. https://doi.org/10.1038/ncomms13554

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stivaletta N, Barbieri R, Cevenini F, López-García P (2011) Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol J 28:83–95. https://doi.org/10.1080/01490451003653102

    Article  CAS  Google Scholar 

  61. Thiel V, Tank M, Neulinger SC, Gehrmann L, Dorador C, Imhoff JF (2010) Unique communities of anoxygenic phototrophic bacteria in saline lakes of Salar de Atacama (Chile): evidence for a new phylogenetic lineage of phototrophic Gammaproteobacteria from pufLM gene analyses. FEMS Microbiol Ecol 74:510–522

    Article  CAS  Google Scholar 

  62. Demergasso C, Dorador C, Meneses D, Blamey J, Cabrol N, Escudero L, Chong G (2010) Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano. J Geophys Res Biogeosci 115

  63. Simoneit BRT, Halpern HI, Didyk BM (1980) Lipid productivity of a high Andean lake. In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments: Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB) and, Conference on Biogeochemistry in Relation to the Mining Industry and Environmental Pollution (Leaching Conference), held in Canberra, Australia, 26 August – 4 September 1979. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 201–210

  64. Farías ME, Fernández-Zenoff V, Flores R, Ordóñez O, Estévez C (2009) Impact of solar radiation on bacterioplankton in Laguna Vilama, a hypersaline Andean lake (4650 m): solar radiation in bacterioplankton. J Geophys Res 114. https://doi.org/10.1029/2008jg000784

  65. Farías ME, Poiré DG, Arrouy MJ, Albarracin VH (2011) Modern stromatolite ecosystems at alkaline and hypersaline high-altitude lakes in the Argentinean Puna. In: Tewari V, Seckbach J (eds) Stromatolites: interaction of microbes with sediments. Springer Netherlands, Dordrecht, pp 427–441

    Chapter  Google Scholar 

  66. Albarracín VH, Kurth D, Ordoñez OD et al (2015) High-up: a remote reservoir of microbial extremophiles in Central Andean wetlands. Front Microbiol 6:1404. https://doi.org/10.3389/fmicb.2015.01404

    Article  PubMed  PubMed Central  Google Scholar 

  67. Toneatti DM, Albarracín VH, Flores MR, Polerecky L, Farías ME (2017) Stratified bacterial diversity along physico-chemical gradients in high-altitude modern stromatolites. Front Microbiol 8:646. https://doi.org/10.3389/fmicb.2017.00646

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kurth D, Amadio A, Ordoñez OF et al (2017) Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 7:1024. https://doi.org/10.1038/s41598-017-00896-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, Daniel R, Dib JR (2020) First report on the plasmidome from a high-altitude lake of the andean Puna. Front Microbiol 11:1343. https://doi.org/10.3389/fmicb.2020.01343

    Article  PubMed  PubMed Central  Google Scholar 

  70. Villafañe PG, Lencina AI, Soria M, et al (2021) Las Quínoas oncoids: a new deposit of microbialites in the Salar De Antofalla (Catamarca, Argentina). Andean Geology 48 (2). https://doi.org/10.5027/andgeoV48n2-3292

  71. Valero-Garcés BL, Arenas C, Delgado-Huertas A (2001) Depositional environments of Quaternary lacustrine travertines and stromatolites from high-altitude Andean lakes, northwestern Argentina. Can J Earth Sci 38:1263–1283. https://doi.org/10.1139/e01-014

    Article  Google Scholar 

  72. Farias ME (2019) Ecosistemas microbianos de la Puna: El inmenso valor de lo diminuto. In: Grau RH, Babot MJ, Izquierdo AE, Grau A (eds) La Puna Argentina: Naturaleza y Cultura 24:246–268

  73. Stepanenko T, Soria MN, Acuña LAS et al (2020) A unique natural laboratory to study polyextremophile microorganisms: Diamante Lake as a window to the origin of life. Microbial Ecosystems in Central Andes Extreme Environments:113–120

  74. María Sancho-Tomás, Andréa Somogyi, Kadda Medjoubi, Antoine Bergamaschi, Pieter T. Visscher, Alexander E.S. van Driessche, Emmanuelle Gérard, María E. Farias, Manuel Contreras, Pascal Philippot, (2020) Geochemical evidence for arsenic cycling in living microbialites of a High Altitude Andean Lake (Laguna Diamante, Argentina). Chemical Geology 549:119681

  75. Boidi FJ, Mlewski EC, Gomez FJ, Gérard E (2020) Characterization of microbialites and microbial mats of the Laguna Negra Hypersaline Lake (Puna of Catamarca, Argentina). In: Farías ME (ed) Microbial ecosystems in Central Andes extreme environments: biofilms, microbial mats, microbialites and endoevaporites. Springer International Publishing, Cham, pp 183–203

    Chapter  Google Scholar 

  76. Gomez FJ, Boidi FJ, Mlewski EC, Gérard E (2020) The carbonate system in hypersaline lakes: the case of Laguna Negra (in the Puna Region of Catamarca, Argentina). In: Farías ME (ed) Microbial ecosystems in Central Andes extreme environments: biofilms, microbial mats, microbialites and endoevaporites. Springer International Publishing, Cham, pp 231–242

    Chapter  Google Scholar 

  77. Beeler SR, Gomez FJ, Bradley AS (2020) Controls of extreme isotopic enrichment in modern microbialites and associated abiogenic carbonates. Geochim Cosmochim Acta 269:136–149. https://doi.org/10.1016/j.gca.2019.10.022

    Article  CAS  Google Scholar 

  78. James NP (1992) Introduction to carbonate and evaporite facies models. Facies models-response to sea level change 265–275

  79. Alonso RN, Bookhagen B, Carrapa B, Coutand I, Haschke M, Hilley GE, Schoenbohm L, Sobel ER, Strecker MR, Trauth MH, Villanueva A (2006) Tectonics, climate, and landscape evolution of the southern Central Andes: the Argentine Puna plateau and adjacent regions between 22 and 30°S. In: Oncken O, Chong G, Franz G et al (eds) The Andes: active subduction orogeny. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 265–283

    Chapter  Google Scholar 

  80. Alonso RN, Jordan TE, Tabbutt KT, Vandervoort DS (1991) Giant evaporite belts of the Neogene central Andes. Geology 19 (4):401–404. https://doi.org/10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2

  81. Alonso RN (2006) Ambientes evaporíticos continentales de Argentina

  82. Risacher F, Alonso H (1996) Geoquimica del Salar de Atacama, parte 2: evolucion de las aguas. Revista Geológica de Chile 23 (2):123–134. https://doi.org/10.5027/andgeoV23n2-a02

  83. Alonso RN (1999) El Terciario de la Puna salteña. Relatorio. In: XIV Congreso Geológico Argentino. pp 311–316

  84. Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, van den Bogaard P, Görler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. J S Am Earth Sci 12:157–182. https://doi.org/10.1016/S0895-9811(99)00012-7

    Article  Google Scholar 

  85. Cervetto Sepúlveda MM (2012) Caracterización hidrogeológica e hidrogeoquímica de las cuencas:| bSalar de Aguas calientes 2, Puntas negras, Laguna Tuyajto, Pampa Colorada, Pampa Las Tecas y Salar el Laco, II región de Chile

  86. Davila AF, Schulze-Makuch D (2016) The last possible outposts for life on Mars. Astrobiology 16:159–168. https://doi.org/10.1089/ast.2015.1380

    Article  PubMed  Google Scholar 

  87. Vítek P, Ascaso C, Artieda O, Casero MC, Wierzchos J (2020) Raman imaging of microbial colonization in rock-some analytical aspects. Anal Bioanal Chem 412:3717–3726. https://doi.org/10.1007/s00216-020-02622-8

    Article  CAS  PubMed  Google Scholar 

  88. Mora-Ruiz M de R, del Rocío Mora-Ruiz M, Díaz-Gil C (2020) Microbial diversity in athalassohaline Argentinean salterns. Microbial Ecosystems in Central Andes Extreme Environments 165–179

  89. Huang W, Ertekin E, Wang T, Cruz L, Dailey M, DiRuggiero J, Kisailus D (2020) Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proc Natl Acad Sci U S A 117:10681–10687. https://doi.org/10.1073/pnas.2001613117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oren A, Kühl M, Karsten U (1995) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar Ecol Prog Ser 128:151–159. https://doi.org/10.3354/meps128151

    Article  Google Scholar 

  91. Demergasso C, Chong G, Galleguillos P et al (2003) Microbial mats from the Llamará salt flat, northern Chile. Rev Chil Hist Nat 76:485–499

  92. Farías ME, Contreras M (2013) Ecosistemas Microbianos asociados a humedales altoandinos: ¿Nuevo patrimonio de la Humanidad?. Bitacora Ecológica 1:6–12

  93. Farías ME, Contreras M, Fernando Novoa F (2018) Extremófilos y Origen de la Vida en Atacama

  94. Ashby AS (2006) Guia de lengua Quechua para castellano hablantes: lista breve de expresiones y palabras útiles ; Quechua de lambayeque

  95. Gutiérrez-Preciado A, Saghaï A, Moreira D, Zivanovic Y, Deschamps P, López-García P (2018) Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat Ecol Evol 2:1700–1708. https://doi.org/10.1038/s41559-018-0683-3

    Article  PubMed  PubMed Central  Google Scholar 

  96. Belfiore C, Ordoñez OF, Farías ME (2013) Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 17:421–431. https://doi.org/10.1007/s00792-013-0523-y

    Article  CAS  PubMed  Google Scholar 

  97. Houston J, Butcher A, Ehren P, Evans K, Godfrey L (2011) The evaluation of brine prospects and the requirement for modifications to filing standards. Econ Geol 106:1225–1239. https://doi.org/10.2113/econgeo.106.7.1225

    Article  CAS  Google Scholar 

  98. Hong FD, Seggiaro RE, Monardi CR, et al (2001) Hoja Geológica 2566-III. Cachi. Provincias de Salta y Catamarca. Programa Nacional de Cartas Geológicas de la República Argentina. 1: 250.000. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Boletín Nro 548:

  99. Kennard JM, James NP (1986) Thrombolites and stromatolites; two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  100. Visscher PT, Gallagher KL, Bouton A, Farias ME, Kurth D, Sancho-Tomás M, Philippot P, Somogyi A, Medjoubi K, Vennin E, Bourillot R, Walter MR, Burns BP, Contreras M, Dupraz C (2020) Modern arsenotrophic microbial mats provide an analogue for life in the anoxic Archean. Commun Earth Environ 1:24. https://doi.org/10.1038/s43247-020-00025-2

    Article  Google Scholar 

  101. Gomez FJ, Mlewski C, Boidi FJ, Farías ME, Gérard E (2018) Calcium carbonate precipitation in diatom-rich microbial mats: the Laguna Negra hypersaline lake, Catamarca, Argentina. J Sediment Res 88:727–742. https://doi.org/10.2110/jsr.2018.37

    Article  CAS  Google Scholar 

  102. Bebout BM, Garcia-Pichel F (1995) UV B-induced vertical migrations of cyanobacteria in a microbial mat. Appl Environ Microbiol 61:4215–4222. https://doi.org/10.1128/AEM.61.12.4215-4222.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100. https://doi.org/10.1016/j.palaeo.2004.10.016

    Article  Google Scholar 

  104. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936. https://doi.org/10.1128/AEM.02473-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kurth D, Elias D, Rasuk MC, Contreras M, Farías ME (2021) Carbon fixation and rhodopsin systems in microbial mats from hypersaline lakes Brava and Tebenquiche, Salar de Atacama, Chile. PLoS One 16:e0246656. https://doi.org/10.1371/journal.pone.0246656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Winsborough BM, Golubić S (2007) The role of diatoms in stromatolite growth: two examples from modern freshwater settings1. J Phycol 23:195–201

    Article  Google Scholar 

  107. Polla W, Di Pasquale VA, Rasuk MC, et al (2018) Diet and feeding selectivity of the Andean Flamingo Phoenicoparrus andinus and Chilean Flamingo Phoenicopterus chilensis in lowland wintering areas

  108. Maidana NI, Seeligmann CT (2015) Diatomeas (Bacillariophyceae) en humedales de altura de la Provincia de Catamarca (Argentina). III. Bol Soc Argent Bot 50:447–466. https://doi.org/10.31055/1851.2372.v50.n4.12908

    Article  Google Scholar 

  109. Rasuk MC, Leiva MC, Kurth D, Farías ME (2020) Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). Microbial Ecosystems in Central Andes Extreme Environments 153–164

  110. Ventosa A. Unusual micro-organisms from unusual habitats: hypersaline environments. Prokaryotic diversity 223–254

  111. De Jonckheere JF, Baumgartner M, Opperdoes FR, Stetter KO (2009) Marinamoeba thermophila, a new marine heterolobosean amoeba growing at 50 degrees C. Eur J Protistol 45:231–236. https://doi.org/10.1016/j.ejop.2009.01.001

    Article  PubMed  Google Scholar 

  112. Liu K, Ding X, Wang H-F, Zhang X, Hozzein WN, Wadaan MAM, Lan A, Zhang B, Li W (2014) Eukaryotic microbial communities in hypersaline soils and sediments from the alkaline hypersaline Huama Lake as revealed by 454 pyrosequencing. Antonie Van Leeuwenhoek 105:871–880. https://doi.org/10.1007/s10482-014-0141-4

    Article  CAS  PubMed  Google Scholar 

  113. Butinar L, Sonjak S, Zalar P et al (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48

  114. Mobberley JM (2013) Exploring microbial and functional gene diversity in modern marine thrombolitic mat communities. University of Florida

  115. Ordoñez OF, Lanzarotti E, Kurth D et al (2015) Genome comparison of two Exiguobacterium strains from high altitude andean lakes with different arsenic resistance: identification and 3D modeling of the Acr3 efflux pump. Front Environ Sci Eng China 3. https://doi.org/10.3389/fenvs.2015.00050

  116. Ordoñez OF, Rasuk MC, Soria MN et al (2018) Haloarchaea from the Andean Puna: biological role in the energy metabolism of arsenic. Microb Ecol 76:695–705. https://doi.org/10.1007/s00248-018-1159-3

    Article  CAS  PubMed  Google Scholar 

  117. Saona LA, Valenzuela-Diaz S, Kurth D, et al (2019) Analysis of co-regulated abundance of genes associated with arsenic and phosphate metabolism in Andean Microbial Ecosystems. Cold Spring Harbor Laboratory 870428

  118. Wilkie JA, Hering JG (1998) Rapid oxidation of geothermal arsenic(III) in streamwaters of the Eastern Sierra Nevada. Environ Sci Technol 32:657–662. https://doi.org/10.1021/es970637r

    Article  CAS  Google Scholar 

  119. Hoeft SE, Kulp TR, Han S, Lanoil B, Oremland RS (2010) Coupled arsenotrophy in a hot spring photosynthetic biofilm at Mono Lake, California. Appl Environ Microbiol 76:4633–4639. https://doi.org/10.1128/AEM.00545-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26:522–536. https://doi.org/10.1080/01490450903102525

    Article  CAS  Google Scholar 

  121. Acuña LAS, Soria MN, Villafañe PG, et al (2020) Arsenic and its biological role: from Early Earth to current Andean microbial ecosystems. Microbial Ecosystems in Central Andes Extreme Environments 275–284

  122. Lara J, Escudero González L, Ferrero M, Chong Díaz G, Pedrós-Alió C, Demergasso C (2012) Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile. Extremophiles 16:523–538. https://doi.org/10.1007/s00792-012-0452-1

    Article  CAS  PubMed  Google Scholar 

  123. Rasuk MC, Visscher PT, Leiva MC, Farías ME (2020) Mats and microbialites from Laguna La Brava. Microbial Ecosystems in Central Andes Extreme Environments 221–230

  124. Visscher P, Farias ME, Contreras M, et al (2014) The role of arsenic cycling in carbonate precipitation in microbialites through time. In: Geological Society of America Annual Meeting, Vancouver. pp 19–22

  125. Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Miller LG, Oremland RS (2008) Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967–970. https://doi.org/10.1126/science.1160799

    Article  CAS  PubMed  Google Scholar 

  126. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944. https://doi.org/10.1126/science.1081903

    Article  CAS  PubMed  Google Scholar 

  127. Albarracín VH, Kraiselburd I, Bamann C, Wood PG, Bamberg E, Farias ME, Gärtner W (2016) Functional green-tuned Proteorhodopsin from modern stromatolites. PLoS One 11:e0154962. https://doi.org/10.1371/journal.pone.0154962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Albarracín VH, Gärtner W, Farias ME (2013) UV resistance and photoreactivation of extremophiles from high-altitude Andean Lakes

  129. Gorriti MF, Dias GM, Chimetto LA, Trindade-Silva AE, Silva BS, Mesquita MMA, Gregoracci GB, Farias ME, Thompson CC, Thompson FL (2014) Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics 15:473. https://doi.org/10.1186/1471-2164-15-473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Galisteo C, Sánchez-Porro C, de la Haba RR et al (2019) Characterization of Salinivibrio socompensis sp. nov., a new halophilic bacterium isolated from the high-altitude hypersaline lake Socompa, Argentina. Microorganisms 7. https://doi.org/10.3390/microorganisms7080241

  131. Tkáčová J, Angelovičová M (2012) Heat shock proteins (HSPs): a review. Sci Pap Anim Sci Biotechnol 45:349–353

    Google Scholar 

  132. Ron EZ (2006) Bacterial stress response. Prokaryotes:1012–1027

  133. DasSarma P, Anton BP, DasSarma S et al (2019) Genome sequence and methylation patterns of Halorubrum sp. strain BOL3-1, the first haloarchaeon isolated and cultured from Salar de Uyuni, Bolivia. Microbiol Resour Announc 8. https://doi.org/10.1128/MRA.00386-19

  134. Eissler Y, Gálvez M-J, Dorador C, Hengst M, Molina V (2019) Active microbiome structure and its association with environmental factors and viruses at different aquatic sites of a high-altitude wetland. Microbiologyopen 8:e00667. https://doi.org/10.1002/mbo3.667

    Article  CAS  PubMed  Google Scholar 

  135. Filker S, Sommaruga R, Vila I, Stoeck T (2016) Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol Ecol 25:2286–2301. https://doi.org/10.1111/mec.13633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Santos F, Yarza P, Parro V, Meseguer I, Rosselló-Móra R, Antón J (2012) Culture-independent approaches for studying viruses from hypersaline environments. Appl Environ Microbiol 78:1635–1643. https://doi.org/10.1128/AEM.07175-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. D’Almeida RE, García ME, Pérez MF et al (2019) Novel nematode species in living stromatolites in the Andean Puna. Zool Bespozvon 16:211–218. https://doi.org/10.15298/invertzool.16.3.01

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank Luis Ahumada and Marcos Contreras for their assistance in the field trips and the native communities of Tolar Grande, Antofalla, El Peñón, Antofagasta de la Sierra, and San Pedro de Atacama for their support. We also want to thank the Secretaries of the Environment from Catamarca and Salta provinces, as well as the Ministerial Regional Secretary (SEREMI) of the Environment (Antofagasta Region) for providing us the exploration permits. DG additionally thanks to the Swedish International Development Cooperation Agency for supporting his work.

Funding

This work was supported by the National Council for Science and Technology (CONICET, Argentina), the Argentinian National Fund for Science and Technology (FONCyT; PICT 2013/0730 and PICT V 2015/3825 projects), and the Center of Applied Ecology (CEA-Chile).

Author information

Authors and Affiliations

Authors

Contributions

FAV and MEF designed and performed the review. MEF conceived the original HAAL project. FAV, AIL, TMS, MNS, LAS, DK, DG, PGV, VHA, and MEF wrote the review. FAV, AIL, TMS, JSF, DGP, and MEF revised the review. MEF, DG, and MC obtained funding for the original project idea. All authors read and approved this manuscript.

Corresponding author

Correspondence to María E. Farías.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignale, F.A., Lencina, A.I., Stepanenko, T.M. et al. Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes. Microb Ecol 83, 1–17 (2022). https://doi.org/10.1007/s00248-021-01725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01725-8

Keywords

Navigation