Skip to main content
Log in

Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura mountains)

  • Published:
Facies Aims and scope Submit manuscript

Summary

Benthic microbial crusts (microbialites or microbolites) are an important component of Middle to Upper Oxfordian shallow-water coral bioherms in the Swiss Jura. They display stromatolitic (laminated), thrombolitic (clotted), and leiolitic (structureless) fabrics, which are distributed heterogeneously throughout the studied sections. The bioherms can be subdivided into coral-microbialite facies, microbialite-dominated facies, and sediment matrix.

Macroscopic and microscopic study reveals that microbialitic encrustations commonly occur in two layers. The first one is directly in contact with the substrate and composed of leiolite (locally stromatolite) and a well-diversified micro-encruster fauna; the second one fills the remaining porosity partly or completely with thrombolite and low-diversity micro-encrusters. The growth of the first layer accompanies the growth of the coral reef and thus formed under the same environmental conditions. The second layer is the result of a moving encrustation front filling the remaining porosity (micro- and macrocavities) inside the reef, below the living surface. Both layers play an important role in early cementation. Phototrophic cyanobacteria probably intervene in the formation of the first encrustation zone, whereas heterotrophic bacteria associated to acidic, Ca2+-binding macromolecules in biofilms are thought to contribute to the thrombolite inside the reef body. When coral growth cannot take pace with microbialite development, the thrombolite from reaches the surface of the construction and finally covers the reef. The result is a thick interval of thrombolite, which can be interpreted as being related to an ecological crisis in coral-reef evolution.

A semi-quantitative analysis of the relative abundance of microbialite types and associated micro-encrusters permits to better constrain the processes leading to a reef crisis. Four micro-encruster associations can be distinguished, and each follows an evolutionary trend in the studied section:Terebella-Tubiphytes dominated,Serpula-Berenicea dominated,Litho-codium dominated, andBacinella dominated. These trends are interpreted to reflect changes in environmental conditions. Bioerosion generally is at its maximum before and after abundant growth of microbialite.

According to microbialite-bioerosion relationships and shifts in micro-encruster associations, we propose that the evolution towards a coral-reef crisis involves four main phases: (1) An oligotrophic to low mesotrophic phase when low water turbidity and good oxygenation allow phototrophic metabolisms. This leads to a maximum of coral diversity and development of light-dependent micro-encrusters. (2) A low-mesotrophic phase when increased turbidity and slack water circulation reduce the photic zone and favor heterotrophic micro- and macrofauna. Bioerosion through bivalves increases. (3) A high-mesotrophic phase when environmental conditions are so bad that only microbiatite can be produced. (4) A eutrophic phase when carbonate production is inhibited by high nutrient input and clay flocculation as a result of increased terrestrial run-off.

The observed evolutionary trends are not directly linked to changes in bathymetry, but sea-level fluctuations played an important role in opening and closing the depositional environments on the shallow platform. Climatic changes contributed in modulating the influx of siliciclastics and nutrients, and the alkalinity of the water. Demise of coral reefs generally coincides with low sea level and humid climate. Sea-level and climatic fluctuations and, consequently, the crises in reef growth are linked to orbital cycles in the Milandkovitch frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aillud, G. & Dupraz, C. (1998): The implications of environmental stress on microsolenid bioconstruction palaeoecology: a comparison of the Upper Jurassic of Switzerland and the Lower Cretaceous of Portugal.—Sixth Meeting of Swiss Sedimentologists, Abstract, 5, Fribourg

  • Aitken, J.D. (1967): Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta.—J. Sed. Petrol.37, 1163–1178, Tulsa

    Google Scholar 

  • Alloiteau, J. (1957): Contribution à la systématique des madréporaires fossiles.—462 p. (2 vol.), Centre national de la recherche scientifique, Paris

  • Banner, F.T., Finch, E.M. &Simmons, M.D. (1990): OnLithocodium Elliot (Calcareous algae); its paleobiological and stratigraphical significance.—J. Micropal.9, 21–36, London

    Google Scholar 

  • Bauld, J. (1981): Geobiological role of cyanobacterial mats in sedimentary environments: production and preservation of organic matter.—J. Austral. Geol. Geophys.6, 307–317, Canberra

    Google Scholar 

  • Berger, A., Loutre, M.F. &Dehant, V. (1989): Astronomical frequencies for pre-Quaternary paleoclimate studies.—Terra Nova1, 474–479, Oxford

    Google Scholar 

  • Berger, R.A. (1971): Bacterial processes affecting the precipitation of calcium carbonate in sediment.—In:Bricker, O.P. (ed): Carbonate Cements.—247–251, Baltimore (Johns Hopkins)

    Google Scholar 

  • Bertling, M. (1993): Ecology and distribution of the Late Jurassic ScleractinianThamnasteria concinna (Goldfuss) in Europe. —Palaeogeo., Palaeoclim., Palaeoeco,105, 311–335, Amsterdam

    Article  Google Scholar 

  • Bertling, M. &Insalaco, E. (1998): Late Jurassic coral/microbial reefs from the northern Paris Basin—facies, palaeoecology and palaeobiogeography.—Palaeogeo., Palaeoclim., Palaeoeco.139, 139–174, Amsterdam

    Article  Google Scholar 

  • Birkeland, C. (1987): Nutrient availability as a major determinant of differences among coastal bard-substratum communities in different regions of the tropics.—In:Birkeland,C. (ed.): Differences between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes, and Productivity.—UNESCO Reports in Marine Science, 45–97, Paris

  • Bosence, D.W.J. (1979): The factors leading to aggregation and reef formation inSerpula vermicularis L.—In:Larwood G. &Rosen, B.R. (eds.): Biology and Systematics of Colonial Organisms.—Syst. Assoc. Spec. Publ.11, 299–318, London (Academic Press)

    Google Scholar 

  • Braga, J.C., Martin, J.M. &Riding, R. (1995): Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain.—Palaios10, 347–361, Tulsa

    Google Scholar 

  • Brasier, M.D. (1995a): Fossil indicators of nutrient levels. 1: Eutrophication and climate change.—In:Bosence, D.W.J. & Allison, P.A. (eds): Marine Palaeoenvironmental Analysis from Fossils.—Geol. Soc. Spec. Publ.83, 113–132, London

  • Brasier, M.D. (1995b): Fossil indicators of nutrient levels. 2: Evolution and extinction in relation to oligotrophy.—In:Bosence, D.W.J. & Allison, P.A. (eds): Marine Palaeoenvironmental Analysis from Fossils.—Geol. Soc. Spec. Publ.83, 133–150, London

  • Bromley, R.G. (1994): The palaeoecology of bioerosion.—In:Donovan, S.K. (ed.): The palaeobiology of Trace Fossils.— 134–154, London (Belhaven)

    Google Scholar 

  • Bromley, R.G. &Asgaard, U. (1993a): Two bioerosion ichnofacies produced by early and late burial associated with sea-level change.—Geol. Rundsch.82, 276–280, Stuttgart

    Article  Google Scholar 

  • —— (1993b): Endolithic community replacement on a Pliocene rocky coast.—Ichnos2, 93–116, Chur (Hardwood Academic)

    Google Scholar 

  • Bromley, R.G. &Martinell, J. (1991):Centrichnus, new ichnogenus for centrically patterned attachment scars on skeletal substrates.—Bull. Geol. Soc. Denmark38, 243–252, Copenhagen

    Google Scholar 

  • Burne, R.V. &Moore, L.S. (1987): Microbialites: Organo-sedimentary deposits of benthic microbial communities.— Palaios2, 241–254, Tulsa

    Google Scholar 

  • Camoin, G.F. &Maurin, A.-F. (1988): Rôles des micro-organismes (bactéries, cyanobactéries) dans la genèse des “Mud Mounds”. Exemples du Turonien des Jebels Biréno et Mrhila (Tunisie). —C.R. Acad. Sci. Paris307, 401–407, Paris

    Google Scholar 

  • Camoin, G.F. &Montaggioni, L.F. (1994): High energy coralgal-stromatolite frameworks from Holocene reefs (Tahiti, French Polynesia).—Sedimentology41, 655–676, Oxford

    Article  Google Scholar 

  • Camoin, G.F., Montaggioni, L.F. &Cabioch, G. (1997): Environmental significance of microbialites in Quaternary reefs: the Tahiti paradox.—Abstract, IAS-ASF-IGCP 380 Int. Workshop on “Microbial Mediation in Carbonate Diagenesis” Publ. ASF26, 11, Chichilianne

    Google Scholar 

  • Caplan, M.L., Bustin, R.M. &Grimm, K.A. (1996): Demise of a Devonian-Carboniferous carbonate ramp by eutrophication, —Geology24, 715–718, Boulder

    Article  Google Scholar 

  • Castanier, S. (1987): Microbiogéologie: Processus et modalités de la carbonatogenèse bactérienne.—541 p., unpubl. PhD thesis, Univ. Nantes

  • Castanier, S., Le Métayer-Levrel, G. &Perthuisot, J.-P. (1997): Limestone genesis considered from the microbiogeologist point of view.—Abstract, IAS-ASF-IGCP 380 Int. Workshop on “Microbial Mediation in Carbonate Diagenesis”, Publ. ASF26, 13, Chichilianne

    Google Scholar 

  • Chafetz, H.S. (1986): Marine peloids: a product of bacterially induced precipitation of calcite.—J. Sed. Petrol.56, 812–817, Tulsa

    Google Scholar 

  • Chafetz, H.S. &Buczynski, C. (1992): Bacterially induced lithification of microbial mats.—Palaios7, 277–293, Tulsa

    Google Scholar 

  • Cherchi, A. &Schroeder, R. (1979):Koskinobulina n. gen., microorganisme en colonieincertae sedis (algues?) du Jurassique-Crétacé de la région méditerranéenne; Note préliminaire.—Bull. Centre Rech. Explor.-Prod. Elf-Aquitaine3, 519–523, Pau

    Google Scholar 

  • —— (1985):Koskinobulina socialis Cherchi & Schroeder 1979: a colonial microfossilincertae sedis (algae?) from Jurassic-Cretaceous of the Mediterranean region.—Boll. Soc. Pal. Ital.,23, 361–374, Roma

    Google Scholar 

  • Cirilli, S. (1997): Environmental versus organic controls on biogenic mouds: examples from the Upper Triassic of northern and central Apennines (Italy).—In:Neuweiler, F., Reitner, J. & Monty, C. (eds): Biosedimentology of Microbial Buildups, IGCP Project 380. Proceedings 2nd Meeting, Göttingen.—Facies36, 257–262, Erlangen

  • Copper, P. (1976): The cyanophyteWetheredella in Ordovician reefs and off-reef sediments.—Lethaia9, 273–281, Oslo

    Google Scholar 

  • Cuffey, R.J. &Ehleiter, J.E. (1984): New bryozoan species from the Mid-Jurassic Twin Creek and Carmel Formations of Wyoming and Utah.—J. Paleont.58, 668–682, Tulsa

    Google Scholar 

  • Dupraz, C. (1999): Paléontologie, paléoécologie et évolution des faciès récifaux de l’Oxfordien moyen-supérieur (Jura suisse et français).—Unpubl. PhD thesis, Univ. Fribourg (in prep.)

  • Ehrlich, H.L. (1996): Geomicrobiology, 3rd ed.—393 p., New York (Dekker)

    Google Scholar 

  • Errenst, C. (1990): Das korallenführende Kimmeridgium der nordwestlichen iberischen Ketten und angrenzender Gebiete (1).—Palaeontographica214, 121–207, Stuttgart

    Google Scholar 

  • Feldmann, M. &McKenzie, J.A. (1998): Stromatolite-thrombolite association in a modern environment, Lee Stocking Island, Bahamas.—Palaios13, 201–212, Tulsa

    Google Scholar 

  • Flügel, E. (1981): “Tubiphyten” aus dem fränkischen Malm.— Geol. Bl. Nordost-Bayern31, 126–142, Erlangen

    Google Scholar 

  • Flügel, E., Di Stefano, P. &Senowbari-Daryan, B. (1991): Microfacies and depositional structure of allochthonous carbonate base-of-slope deposits: the Late Permian Pietra di Salomone megablock, Sosio Valley (western Silicy).—Facies25, 147–186, Erlangen

    Google Scholar 

  • Flügel, E. &Flügel-Kahler, E. (1992): Phanerozoic reef evolution: Basic questions and data base.—Facies26, 167–278, Erlangen

    Google Scholar 

  • Flügel, E., Kiessling, W. & Golonka, J. (1996): Phanerozoic reef patterns: data survey, distribution maps and interpretation. —In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Res. Reports.—Göttinger Arb. Geol. Paläont.Sb2, 391–396, Göttingen

  • Fürsich, F.T., Dhirendra, K.P., Oschmann, W., Jaitly, A.K. &Singh, I.B. (1994): Ecology and adaptive strategies of corals in unfavourable environments: Examples from the Middle Jurassic of the Kachchh Basin, western India.—N. Jb. Geol. Paläont. Abh.194, 269–303, Stuttgart

    Google Scholar 

  • Geister, J. & Lathuilière, B. (1991): Jurassic coral reefs of the northeastern Paris Basin (Luxembourg and Lorraine).—Excursions-Guidebook, VI Int. Symp. Fossil Cnidaria, 112 p., Münster

  • Gill, G.A. (1977): Essai de regroupement des Stylines (Hexacoralliaires) d’après la morphologie des bords internes de leurs septes.—Mém. Bur. Rech. Géol. Min.89, 283–295, Paris

    Google Scholar 

  • Gill, G.A. & Santantonio, M. (1995): Ecologial significance of pennular coral assemblages in the Upper Jurassic pelagic deposits of the Umbria-Marche-Sabina Apennines (Central Italy).—Abstract, VII Int. Symp. Fossil Cnidaria and Porifera, Madrid

  • Ginsburg, R.N. &Schroeder, J.H. (1973): Growth and submarine fossilization of algal cup reefs, Bermuda.—Sedimentology20, 575–614, Oxford

    Article  Google Scholar 

  • Gisiger, M. (1967): Géologie de la région Lac Noir—Kaiseregg —Schafberg (Préalpes médianes plastiques fribourgeoises et bernoises).—Eclogae Geol. Helv.60, 237–355, Basel

    Google Scholar 

  • Greppin, E. (1867): Essai géologique sur le Jura suisse.—152 p., Delémont (Helg et Boechat)

    Google Scholar 

  • Greppin, E. (1870): Description géologique du Jura bernois.— Mat. Carte Géol. Suisse18, 357 p., Bern

    Google Scholar 

  • Gygi, R.A. (1990): The Oxfordian ammonite succession near Liesberg BE and Péry BE, northern Switzerland.—Eclogae Geol. Helv.83, 177–199, Basel

    Google Scholar 

  • — (1992): Structure, pattern of distribution and paleobathymetry of Late Jurassic microbialites (stromatolites and oncoids) in northern Switzerland.—Eclogae Geol. Helv.,85, 799–824, Basel

    Google Scholar 

  • — (1995): Datierung von Seichtwassersedimenten des Späten Jura in der Nordwestschweiz mit Ammoniten.—Eclogae Geol. Helv.88, 1–58, Basel

    Google Scholar 

  • Gygi, R.A. &Persoz, F. (1986): Mineralostratigraphy, litho- and biostratigraphy combined in correlation of the Oxfordian (Late Jurassic) formations of the Swiss Jura range.—Eclogae Geol. Helv.79, 385–454, Basel

    Google Scholar 

  • Hallock, P. (1987): Fluctuations in the trophic resource continuum: a factor in global diversity cycles?.—Paleoceanography2, 457–471, Washington

    Article  Google Scholar 

  • — (1988): The role of nutrient availability in bioerosion: consequences to carbonate buildups.—Palaeogeo., Palaeoclim., Palaeoeco,63, 275–291, Amsterdam

    Article  Google Scholar 

  • — (1997): Reefs and reef limestones in earth history.—In:Birkeland, C. (ed.): Life and Death of Coral Reefs.—13–42, London (Chapman & Hall)

    Google Scholar 

  • Hallock, P. &Schlager, W. (1986): Nutrient excess and the demise of coral reefs and carbonate platforms.—Palaios1, 389–398, Tulsa

    Google Scholar 

  • Haslett, S.K. (1992): Rhaxellid sponge microscleres from the Portlandian of Dorset, UK.—Geol. J.27, 339–347, Liverpool

    Google Scholar 

  • Heer, O. (1865): Die Urwelt der Schweiz.—662 p., Zürich (Schulthess)

    Google Scholar 

  • Helm, C. &Schülke, I. (1998): A coral-microbialite patch-reef from the Late Jurassic (florigemma-Bank, Oxfordian) of NW Germany (Süntel Mountains).—Facies39, 75–104, Erlangen

    Google Scholar 

  • Hillgärtner, H., Dupraz, C. & Hug, W.A. (1999): Microbially induced stabilization of carbonate sands, or: are micritic meniscus cements good indicators for vadose diagenesis?— Sedimentology, Oxford (in press)

  • Insalaco, E. (1996a): Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. —Palaeogeo., Palaeoclim., Palaeoeco.121, 169–194, Amsterdam

    Article  Google Scholar 

  • — (1996b): The use of Late Jurassic coral growth bands as palaeoenvironmental indicators.—Palaeontology39, 413–431, London

    Google Scholar 

  • — (1998): The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs.—Sed. Geol.118, 159–186, Amsterdam

    Article  Google Scholar 

  • Insalaco, E., Hallam, A. &Rosen, B. (1997): Oxfordian (Upper Jurassic) coral reefs in western Europe: reef types and conceptual depositional model.—Sedimentology44, 707–734, Oxford

    Article  Google Scholar 

  • Kennard, J.M. &James, N.P. (1986): Thrombolites and stromatolites: two distinct types of microbial structures.—Palaios1, 492–503, Tulsa

    Google Scholar 

  • Keupp, H., Brugger, H., Galling, U., Hefter, J., Herrmann, R., Jenisch, A., Kempe, S., Michaelis, W., Seifert, R. & Thiel, V. (1996): Paleobiological controls of Jurassic spongiolites.— In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Res. Reports.—Göttinger Arb. Geol. PaläontSb2, 209–214, Göttingen

  • Keupp, H., Koch, R. &Leinfelder, R. (1990): Controlling processes in the development of Upper Jurassic spongiolites in Southern Germany: state of the art, problems and perspectives. —Facies23, 3–17, Erlangen

    Google Scholar 

  • Kleemann, K. (1994): Associations of corals and boring bivalves since the Late Cretaceous.—Facies31, 131–140, Erlangen

    Google Scholar 

  • Knoll, A.H. &Awramik, S.M. (1983): Ancient microbial ecosystems. —In:Krumbein, W.E. (ed): Microbial Geochemistry. —287–315, Oxford (Blackwell)

    Google Scholar 

  • Kobluk, D.R. (1988): Cryptic faunas in reefs: ecology and geologic importance.—Palaios3, 379–390, Tulsa

    Google Scholar 

  • Koby, F. (1881–1889): Monographie des polypiers jurassiques de la Suisse.—Mém. Soc. Pal. Suisse,8–16, Basel

  • Krumbein, W.E. &Swart, P.K. (1983): The microbial carbon cycle.—In:Krumbein, W.E. (ed.): Microbial Geochemistry.— 5–62, Oxford (Blackwell)

    Google Scholar 

  • Lang, B. (1989): Die Schwamm-Biohermfazies der Nördlichen Frankenalb (Urspring; Oxford, Malm): Microfazies, Palökologie, Paläontologie.—Facies20, 199–274, Erlangen

    Google Scholar 

  • Lathuilière, B. (1982): Bioconstructions bajociennes à madréporaires et faciès associés dans l’Île Crémieu (Jura du Sud; France).—Geobios15, 491–504, Lyon

    Google Scholar 

  • Laurenti, A. &Montaggioni, L. (1995): Importance de l’activité microbienne dans la lithification marine récifale (Tahiti, Polynésie française).—C.R. Acad. Sci.320, 845–852, Paris

    Google Scholar 

  • Leinfelder, R.R., Krauter, M., Laternser, R., Nose, M., Schmid, D.U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J.H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G. &Luterbacher, H. (1994): The origin of Jurassic reefs: current research developments and results.—Facies31, 1–56, Erlangen

    Google Scholar 

  • Leinfelder, R.R., Krautter, M., Nose, M., Ramalho, M.M. &Werner, W. (1993a): Siliceous sponge facies from the Upper Jurassic of Portugal.—N. Jb. Geol. Paläont. Abh.189, 199–254, Stuttgart

    Google Scholar 

  • Leinfelder, R.R., Nose, M., Schmid, D.U. &Werner, W. (1993b): Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. —Facies29, 195–230, Erlangen

    Google Scholar 

  • Leinfelder, R.R., Werner, W., Nose, M., Schmid, D.U., Krautter, M., Laternser, R., Takacs, M. & Hartmann, D. (1996): Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the Late Jurassic.—In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Res. Reports.—Göttinger Arb. Geol. Paläont.Sb2, 227–248, Göttingen

  • Löser, H. (ed) (1994): The Mesozoic corals. Bibliography 1758–1993. —Coral Res. Bull.1, 97 p., Dresden

  • Macintyre, I.G. (1985): Submarine cements—the peloidal question. —In:Schneidermann, N. & Harris, P.M. (eds.): Carbonate Cements.—Soc. Econ. Paleont. Miner., Spec. Pub.36, 109–115, Tusla

  • Marshall, J.F. (1983): Submarine cementation in a high-energy platform reef: One Tree Reef, southern Great Barrier Reef.— J. Sed. petrol.53, 1133–1149, Tulsa

    Google Scholar 

  • Mitterer, R.M. (1971): Influence of natural organic matter on CaCO3 precipitation.—In:Bricker, O.P. (ed.): Carbonate Cements.—252–296, Baltimore (Johns Hopkins)

    Google Scholar 

  • Neumeier, U. (1998): Le rôle de l’activité microbienne dans la cimentation précoce de beachrocks (sédiments intertidaux). —183 p., Terre & Environment12, Genève

  • Neuweiler, F. (1993): Development of Albian microbialites and microbialite reefs at marginal platform areas of the Vasco-Cantabrian basin (Soba reef area, Cantabria, N. Spain).— Facies29, 231–250, Erlangen

    Google Scholar 

  • Neuweiler, F., Reitner, J. & Arp, G. (1996): Controlling factors and environmental significance of organomicrite production and buildup development.—In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Res. Reports.—Göttinger Arb. Geol. PaläontSb2, 185–192, Göttingen

  • Nose, M. (1995): Vergleichende Faziesanalyse und Palökologie korallenreicher Verflachungsabfolgen des iberischen Oberjura, —Profil8, 1–237, Stuttgart

    Google Scholar 

  • Nose, M. &Leinfelder, R.R. (1997): Upper Jurassic coral communities within siliciclastic settings (Lusitanian basin, Portugal): implications for symbiotic and nutrient strategies. —Proc. 8th Int. Coral Reef Symp.2, 1755–1760, Panama

    Google Scholar 

  • Oschmann, W. (1991): Anaerobic-poikiloaerobic-aerobic: a new facies zonation for modern and ancient neritic redox facies.—In:Einsele, G., Ricken, W. &Seilacher, A. (eds): Events and Cycles in Stratigraphy.—565–571, Heidelberg (Springer)

    Google Scholar 

  • Pentecost, A. &Riding, R. (1986): Calcification in cyanobacteria. —In:Leadbeater, B.S.C. &Riding, R. (eds): Biomineralization in Lower Plants and Animals.—73–90, Oxford (Clarendon)

    Google Scholar 

  • Peyrot-Clausade, M., Le Campion-Alsumard, T., Harmelin-Vivien, M., Romano, J.-C., Chazottes, V., Pari, N. &Le Campion, J. (1995): La bioérosion dans le cycle des carbonates: essais de quantification des processus en Polynésie française.—Bull. Soc. géol. France166, 85–94, Paris

    Google Scholar 

  • Pittet, B. (1996): Contrôles climatiques, eustatiques et tectoniques sur des systèmes mixtes carbonates-siliciclastiques de plateforme: exemple de l’Oxfordien (Jura suisse, Normandie, Espagne).—258 p., unpubl. PhD thesis, Univ. Fribourg

  • Pittet, B. & Dupraz, C. (1995): Shallow-marine lagoonal patchreefs of the Oxfordian in the Swiss Jura mountains.—In:Lathuilière, B. & Geister, J. (eds): Coral Reefs in the Past, Present and Future.—Abstract, Proc. 2nd. Europ. Reg. Meeting ISRS, Publ. Serv. Geol. Lux.29, 35 Luxembourg

  • Pittet, B. &Strasser, A. (1998): Long-distance correlations by sequence stratigraphy and cyclostratigraphy: examples and implications (Oxfordian from the Swiss Jura, Spain, and Normandy).—Geol. Rundsch.86, 852–874, Stuttgart

    Article  Google Scholar 

  • Pittet, B., Strasser, A. & Dupraz, C. (1995): Palaeoecology, palaeoclimatology and cyclostratigraphy of shallow-water carbonate-siliciclastic transitions in the Oxfordian of the Swiss Jura.—16th IAS Reg. Meet., Field-Trip Guide-Book, 225–254, Aix-les-Bains

  • Pümpin, V.F. (1965): Riffsedimentologische Untersuchungen im Rauracien von St Ursanne und Umgebung (Zentraler Schweizer Jura).—Eclogae Geol. Helv.58, 799–876, Basel

    Google Scholar 

  • Purves, W.K., Orians, G.H. &Heller, H.C. (1994): Le Monde du Vivant: Traité de Biologie.—1224 p., Paris (Flammarion)

    Google Scholar 

  • Reif, W.-E. (1967): Schwammspiculae aus dem Weissen Jura Zeta von Nattheim (Schwäbische Alb).—Palaeontographica127/A, 85–102, Stuttgart

    Google Scholar 

  • Reitner, J. (1993): Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia)—formation and concepts.—Facies29, 2–40, Erlangen

    Google Scholar 

  • Reitner, J. &Gautret, P. (1996): Skeletal formation in the modern but ultraconservative chaetetid spongeSpirastrella (Acanthochaetetes) wellsi (Demospongiae, Porifera).—Facies34, 193–208, Erlangen

    Google Scholar 

  • Reitner, J. &Keupp, H. (1991): The fossil record of the Haplosclerid excavating spongeAka de Laubenfelds.—In:Reitner, J. &Keupp, H. (eds.): Fossil and Recent Sponges.—102–120, Berlin (Springer)

    Google Scholar 

  • Reitner, J. & Neuweiler, F. (1995): Supposed principal controlling factors of rigid micrite buildups.—In:Reitner, J. & Neuweiler, F. (eds.): Mud Mounds: a Polygenetic Spectrum of Fine-grained Carbonate Buildups.—Facies32, 62–65, Erlangen

  • Reitner, J., Neuweiler, F. & Gautret, P. (1995): Modern and fossil automicrites: implications for mud mound genesis.— In:Reitner, J. & Neuweiler, F. (eds): Mud Mounds: a Polygenetic Spectrum of Fine-grained Carbonate Buildups.— Facies32, 4–17, Erlangen

  • Reitner, J., Paul, J. Arp, G. & Hause-Reitner, D. (1996): Lake Thetis domal microbialites—a complex framework of calcified biofilms and organomicrites (Cervantes, Western Australia). —In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Res. Reports.—Göttinger Arb. Geol. Paläont.Sb2, 85–89, Göttingen

  • Reitner, J. & Schumann-Kindel, G. (1997): Pyrite in mineralized sponge tissue—product of sulfate reducing sponge related bacteria?—In:Neuweiler, F., Reitner, J. & Monty, C. (eds): Biosedimentology of Microbial Buildups, IGCP Project 380. Proceedings 2nd Meeting, Göttingen.—Facies36, 272–276, Erlangen

  • Riding, R. (1977): Systematics ofWetheredella.—Lethaia10, p. 94, Oslo

    Google Scholar 

  • — (1991): Classification of microbial carbonates.—In:Riding, R. (ed): Calcareous Algae and Stromatolites, 21–51.—Berlin (Springer)

    Google Scholar 

  • — (1997): Stromatolites: development and preservation.—Abstract, IAS-ASF-IGCP 380 Int. Workshop on “Microbial Mediation in Carbonate Diagenesis”, Publ. ASF26, 65, Chichilianne

    Google Scholar 

  • Riding, R. &Guo, L. (1992): Affinity ofTubiphytes.—Palaeontology35, 37–49, London

    Google Scholar 

  • Riding, R., Martin, J.M. &Braga, J.C. (1991): Coral-stromatolite reef framework, Upper Miocene, Almeria, Spain.—Sedimentology38, 799–818, Oxford

    Article  Google Scholar 

  • Schlichter, D. (1992): A perforated gastrovascular cavity in the symbiotic deep-water coralLeptoseris fragilis: a new strategy to optimize heterotrophic nutrition.—Helgoländer Wissensch. Meeresuntersuch.45, 423–443, Hamburg

    Article  Google Scholar 

  • Schmid, D.U. (1995):“Tubiphytes” morronensis-eine falkultativ inkrustierende Foraminifere mit endosymbiontischen Algen. —Profil8, 305–317, Stuttgart

    Google Scholar 

  • — (1996): Marine Mikrobolithe und Mikroinkrustierer aus dem Oberjura.—Profil9, 101–251, Stuttgart

    Google Scholar 

  • Schmid, D.U. &Leinfelder, R.R. (1996): The JurassicLithocodium aggregatum-Troglotella incrustans foraminiferal consortium. —Palaeontology39, 21–52, London

    Google Scholar 

  • Schumann-Kindel, G., Bergbauer, M., Manz, W., Szewzyk, U. & Reitner, J. (1997): Aerobic and anaerobic microorganisms in modern sponges: a possible relationship to fossilization-processes. —In:Neuweiler, F., Reitner, J. & Monty, C. (eds.): Biosedimentology of Microbial Buildups, IGCP Project 380. Proceedings 2nd Meeting, Göttingen.—Facies36, 268–272, Erlangen

  • Schumann-Kindel, G., Bergbauer M. & Reitner, J. (1996): Bacteria associated with Mediterranean sponges.—In:Reitner, J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Res. Reports.—Göttinger Arb. Geol. Paläont.Sb2, 125–128, Göttingen

  • Segonzac, G. &Marin, P. (1972):Lithocodium aggregatum Elliot etBacinella irregularis Radoicic de l’Aptien de Teruel (Espagne): deux stades de croissance d’un seul et mème organismeincertae sedis.—Bull. Soc. géol. France14, 331–335, Paris

    Google Scholar 

  • Strasser, A., Pittet, B., Dupraz, C. & Hillgärtner, H. (1996): Mixed carbonate-siliciclastic shallow-water sedimentary systems (Upper Jurassic and Lower Cretaceous, Swiss and French Jura Mountains).—Carbonates and Global Change: an Interdisciplinary Approach. SEPM/IAS Research Conference. Guide-book, 39 p., Wildhaus

  • Strasser, A., Pittet, B., Hillgärtiner, H. & Pasquier, J.-B. (1999): Depositional sequences in shallow carbonate-dominated sedimentary systems: concepts and definitions.—Sed. Geol., Amsterdam (submitted)

  • Taylor, P.D. (1979): Functional significance of contrasting colony form in two Mesozoic encrusting bryozoans.— Palaeogeo., Palaeoclim., Palaeoeco.26, 151–158, Amsterdam

    Article  Google Scholar 

  • Thurmann, J. (1851): Abraham Gagnebin de la Ferrière, fragment pour servir à l’histoire scientifique du Jura bernois.— 145 p., Porrentruy

  • Vénec-Peyré, M.-T. (1996): Bioeroding foraminifera: a review. —Marine Micropal.28, 19–30, Amsterdam

    Article  Google Scholar 

  • Verrecchia, E.P., Freytet, P., Verrecchia, K.E. &Dumont, J.L. (1995): Spherulites in calcrete laminar crusts: biogenic CaCO3 precipitation as a major contributor to crust formation.—J. Sed. ResearchA65, 690–700, Tulsa

    Google Scholar 

  • Voigt, E. (1973):Vinelloidea Canu, 1913 (angeblich jurassische Bryozoa Ctenostomata)=Nubeculinella Cushman, 1930 (Foraminifera).—Paläont. Abh.4, 665–670, Berlin

    Google Scholar 

  • Werner, W., Leinfelder, R.R., Fürsich, F.T. &Krautter, M. (1994): Comparative palaeoecology of marly coralline sponge-bearing reefal associations from the Kimmeridgian (Upper Jurassic) of Portugal and southwestern Germany.—Sonderdruck CFS-Courier172, Forschungsinstitut Senckenberg, 381–397, Frankfurt

    Google Scholar 

  • Wernli, R. &Fookes, E. (1992):Troglotella incrustans n. gen., n. sp., un étrange et nouveau foraminifère calcicavicole du complexe récifal Kimméridgien de Saint-Germain-de-Joux (Ain, France).—Boll. Soc. Paleont. Ital.,31, 95–103, Roma

    Google Scholar 

  • Wernli, R.W. &Septfontaine, M. (1971): Micropaléontologie comparée du Dogger du Jura méridional (France) et des Préalpes Médianes Plastiques romandes (Suisse).—Eclogae Geol. Helv.64, 437–458, Basel

    Google Scholar 

  • Wolf, K.H. (1965): Gradational sedimentary products of calcareous algae.—Sedimentology5, 1–37, Oxford

    Article  Google Scholar 

  • Ziegler, P.A. (1988): Evolution of the Arctic-North Atlantic and the western Tethys.—Am. Assoc. Petrol. Geol. Mem.43, 198 p., Tulsa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupraz, C., Strasser, A. Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura mountains). Facies 40, 101–129 (1999). https://doi.org/10.1007/BF02537471

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537471

Keywords

Navigation