Skip to main content
Log in

The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.

    Article  CAS  PubMed  Google Scholar 

  2. Hughes MP. Nanoelectromechanics in engineering and biology, 1st ed. Nanoelectromechanics Eng Biol. 2002. https://doi.org/10.1201/9781315219202.

  3. Oh M, Jayasooriya V, Woo SO, Nawarathna D, Choi Y. Selective manipulation of biomolecules with insulator-based dielectrophoretic tweezers. ACS Appl Nano Mater. 2020;3:797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Modarres P, Tabrizian M. Alternating current dielectrophoresis of biomacromolecules: the interplay of electrokinetic effects. Sensors Actuators B Chem. 2017;252:391–408.

    Article  CAS  Google Scholar 

  5. Jones PV, Salmon GL, Ros A. Continuous separation of DNA molecules by size using insulator-based dielectrophoresis. Anal Chem. 2017;89:1531–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lapizco-Encinas BH. Microscale electrokinetic assessments of proteins employing insulating structures. Curr Opin Chem Eng. 2020;29:9–16.

    Article  Google Scholar 

  7. Hayes MA. Dielectrophoresis of proteins: experimental data and evolving theory. Anal Bioanal Chem. 2020;412:3801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coll De Peña A, Mohd Redzuan NH, Abajorga M, Hill N, Thomas JA, Lapizco-Encinas BH. Analysis of bacteriophages with insulator-based dielectrophoresis. Micromachines. 2019;10:450.

    Article  PubMed Central  Google Scholar 

  9. Madiyar FR, Haller SL, Farooq O, Rothenburg S, Culbertson C, Li J. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays. Electrophoresis. 2017;38:1515–25.

    Article  CAS  PubMed  Google Scholar 

  10. Hakim KS, Lapizco-Encinas BH. Analysis of microorganisms with nonlinear electrokinetic microsystems. Electrophoresis. 2021;42:588–604.

    Article  CAS  PubMed  Google Scholar 

  11. Hill N, De Peña AC, Miller A, Lapizco-Encinas BH. On the potential of microscale electrokinetic cascade devices. Electrophoresis. 2021. https://doi.org/10.1002/elps.202100069.

  12. Kumar N, Wang W, Ortiz-Marquez JC, et al. Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. Biosens Bioelectron. 2020;156:112123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore JH, Honrado C, Stagnaro V, Kolling G, Warren CA, Swami NS. Rapid in vitro assessment of Clostridioides difficile inhibition by probiotics using dielectrophoresis to quantify cell structure alterations. ACS Infect Dis. 2020;6:1000–7.

    Article  CAS  PubMed  Google Scholar 

  14. Coll De Peña A, Hill N, Lapizco-Encinas BH. Determination of the empirical electrokinetic equilibrium condition of microorganisms in microfluidic devices. Biosensors. 2020;10:148.

    Article  PubMed Central  Google Scholar 

  15. Ettehad HM, Zarrin PS, Hölzel R, Wenger C. Dielectrophoretic immobilization of yeast cells using CMOS integrated microfluidics. Micromachines. 2020;11:501.

    Article  Google Scholar 

  16. Ho B, Beech J, Tegenfeldt J. Cell sorting using electrokinetic deterministic lateral displacement. Micromachines. 2020;12:30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Çağlayan Z, Demircan Yalçın Y, Külah H. Examination of the dielectrophoretic spectra of MCF7 breast cancer cells and leukocytes. Electrophoresis. 2020;41:345–52.

    Article  PubMed  Google Scholar 

  18. Ringwelski B, Jayasooriya V, Nawarathna D. Dielectrophoretic high purity isolation of primary T-cells in samples contaminated with leukemia cells, for biomanufacturing of therapeutic CAR T-cells. J Phys D Appl Phys. 2020;54:10.

    Google Scholar 

  19. Zahedi Siani O, Zabetian Targhi M, Sojoodi M, Movahedin M. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization. Bioprocess Biosyst Eng. 2020;43:1573–86.

    Article  CAS  PubMed  Google Scholar 

  20. Aghaamoo M, Aghilinejad A, Chen X, Xu J. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophoresis. 2019;40:1486–93.

    Article  CAS  PubMed  Google Scholar 

  21. Chuang HS, Raizen DM, Lamb A, Dabbish N, Bau HH. Dielectrophoresis of Caenorhabditis elegans. Lab Chip. 2011;11:599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rezai P, Siddiqui A, Selvaganapathy PR, Gupta BP. Behavior of Caenorhabditis elegans in alternating electric field and its application to their localization and control. Appl Phys Lett. 2010;96:153702.

    Article  Google Scholar 

  23. Keck D, Stuart C, Duncan J, Gullette E, Martinez-Duarte R. Highly localized enrichment of Trypanosoma brucei parasites using dielectrophoresis. Micromachines. 2020;11:625.

    Article  PubMed Central  Google Scholar 

  24. O’Konski CT. Electric properties of macromolecules. V Theory of ionic polarization in polyelectrolytes. J Phys Chem. 1960;64:605–19.

    Article  Google Scholar 

  25. Das S, Chakraborty S. Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels. Langmuir. 2008;24:7704–10.

    Article  CAS  PubMed  Google Scholar 

  26. Kłodzińska E, Buszewski B. Electrokinetic detection and characterization of intact microorganisms. Anal Chem. 2009;81:8–15.

    Article  PubMed  Google Scholar 

  27. Polaczyk AL, Amburgey JE, Alansari A, Poler JC, Propato M, Hill VR. Calculation and uncertainty of zeta potentials of microorganisms in a 1:1 electrolyte with a conductivity similar to surface water. Colloids Surf A Physicochem Eng Asp. 2020;586:124097.

    Article  CAS  Google Scholar 

  28. Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta. 2017;966:11–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Microchim Acta. 2021;188:104.

    Article  CAS  Google Scholar 

  30. Douglas TA, Cemazar J, Balani N, Sweeney DC, Schmelz EM, Davalos RV. A feasibility study for enrichment of highly aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow. Electrophoresis. 2017;38:1507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alinezhadbalalami N, Douglas TA, Balani N, Verbridge SS, Davalos RV. The feasibility of using dielectrophoresis for isolation of glioblastoma subpopulations with increased stemness. Electrophoresis. 2019;40:2592–600.

    CAS  PubMed  Google Scholar 

  32. Manczak R, Saada S, Provent T, et al. UHF-dielectrophoresis crossover frequency as a new marker for discrimination of glioblastoma undifferentiated cells. IEEE J Electromagn RF Microwaves Med Biol. 2019;3:191–8.

    Article  Google Scholar 

  33. Trainito CI, Sweeney DC, Čemažar J, Schmelz EM, Français O, Le Pioufle B, Davalos RV. Characterization of sequentially-staged cancer cells using electrorotation. PLoS One. 2019;14:1–18.

    Article  Google Scholar 

  34. Keim K, Rashed MZ, Kilchenmann SC, Delattre A, Gonçalves AF, Éry P, Guiducci C. On-chip technology for single-cell arraying, electrorotation-based analysis and selective release. Electrophoresis. 2019;40:1830–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thiriet P-E, Pezoldt J, Gambardella G, Keim K, Deplancke B, Guiducci C. Selective retrieval of individual cells from microfluidic arrays combining dielectrophoretic force and directed hydrodynamic flow. Micromachines. 2020;11:322.

    Article  PubMed Central  Google Scholar 

  36. Jayasooriya VD, Nawarathna D. Label-free purification of viable human T-lymphocyte cells from a mixture of viable and non-viable cells after transfection by electroporation. J Phys D Appl Phys. 2019;52:36LT01.

    Article  CAS  Google Scholar 

  37. Xuan X. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis. 2019;40:2484–513.

    CAS  PubMed  Google Scholar 

  38. Lapizco-Encinas BH. On the recent developments of insulator-based dielectrophoresis: a review. Electrophoresis. 2019;40:358–75.

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Gonzalez VH. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics. Electrophoresis. 2021. https://doi.org/10.1002/elps.202100123.

  40. Mishchuk NA, Dukhin SS. Electrophoresis of solid particles at large Peclet numbers. Electrophoresis. 2002;23:2012–22.

    Article  CAS  PubMed  Google Scholar 

  41. Mishchuk NA, Takhistov PV. Electroosmosis of the second kind. Colloids Surf A Physicochem Eng Asp. 1995;95:119–31.

    Article  CAS  Google Scholar 

  42. Dukhin SS. Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interf Sci. 1991;35:173–96.

    Article  CAS  Google Scholar 

  43. Rouhi Youssefi M, Diez FJ. Ultrafast electrokinetics. Electrophoresis. 2016;37:692–8.

    Article  CAS  PubMed  Google Scholar 

  44. Dukhin AS, Ulberg ZR, Gruzina TG, Karamushka VI. Peculiarities of live cells’ interaction with micro- and nanoparticles. In: Colloid Interface Sci. Pharm: Res. Dev. Elsevier Inc.; 2014. p. 193–222.

    Google Scholar 

  45. Dukhin SS. Non-equilibrium electric surface phenomena. Adv Colloid Interf Sci. 1993;44:1–134.

    Article  CAS  Google Scholar 

  46. Mishchuk NA, Barinova NO. Theoretical and experimental study of nonlinear electrophoresis. Colloid J. 2011;73:88–96.

    Article  CAS  Google Scholar 

  47. Mishchuk NA. Concentration polarization of interface and non-linear electrokinetic phenomena. Adv Colloid Interf Sci. 2010;160:16–39.

    Article  CAS  Google Scholar 

  48. Shilov V, Barany S, Grosse C, Shramko O. Field-induced disturbance of the double layer electro-neutrality and non-linear electrophoresis. Adv Colloid Interf Sci. 2003;104:159–73.

    Article  CAS  Google Scholar 

  49. Schnitzer O, Zeyde R, Yavneh I, Yariv E. Weakly nonlinear electrophoresis of a highly charged colloidal particle. Phys Fluids. 2013;25:052004.

    Article  Google Scholar 

  50. Schnitzer O, Yariv E. Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis. Phys Fluids. 2014;26:122002.

    Article  Google Scholar 

  51. Schnitzer O, Yariv E. Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2012;86:021503.

    Article  Google Scholar 

  52. Khair AS. Strong deformation of the thick electric double layer around a charged particle during sedimentation or electrophoresis. Langmuir. 2018;34:876–85.

    Article  CAS  PubMed  Google Scholar 

  53. Barany S. Electrophoresis in strong electric fields. Adv Colloid Interf Sci. 2009;147–148:36–43.

    Article  Google Scholar 

  54. Tottori S, Misiunas K, Keyser UF, Bonthuis DJ. Nonlinear electrophoresis of highly charged nonpolarizable particles. Phys Rev Lett. 2019;123:14502.

    Article  CAS  Google Scholar 

  55. Cardenas-Benitez B, Jind B, Gallo-Villanueva RC, Martinez-Chapa SO, Lapizco-Encinas BH, Perez-Gonzalez VH. Direct current electrokinetic particle trapping in insulator-based microfluidics: theory and experiments. Anal Chem. 2020;92:12871–9.

    Article  CAS  PubMed  Google Scholar 

  56. Antunez-Vela S, Perez-Gonzalez VH, Coll De Peña A, Lentz CJ, Lapizco-Encinas BH. Simultaneous determination of linear and nonlinear electrophoretic mobilities of cells and microparticles. Anal Chem. 2020;92:14885–91.

    Article  CAS  PubMed  Google Scholar 

  57. Quevedo DF, Lentz CJ, Coll De Peña A, Hernandez Y, Habibi N, Rikako M, Lahann J, Lapizco-Encinas BH. Electrokinetic characterization of synthetic protein nanoparticles. Beilstein J Nanotechnol. 2020;11:1556–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Coll De Peña A, Miller A, Lentz CJ, Hill N, Parthasarathy A, Hudson AO, Lapizco-Encinas BH. Creation of an electrokinetic characterization library for the detection and identification of biological cells. Anal Bioanal Chem. 2020;412:3935–45.

    Article  PubMed  Google Scholar 

  59. Xuan X. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: from induced charge to joule heating effects. Electrophoresis. 2021. https://doi.org/10.1002/ELPS.202100090.

  60. Qianru W, Neehar DN, R. BC, Wang Q, Dingari NN, Buie CR. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems. Electrophoresis. 2017;38:2576–86.

    Article  Google Scholar 

  61. Pohl HA. The motion and precipitation of Suspensoids in divergent electric fields. J Appl Phys. 1951;22:869–71.

    Article  CAS  Google Scholar 

  62. Pohl HA, Schwar JP. Factors affecting separation of suspensions in nonuniform electric fields. J Appl Phys. 1959;30:69–73.

    Article  Google Scholar 

  63. Pohl HA, Schwar JP. Particle separations by nonuniform electric fields in liquid dielectrics, batch methods. J Electrochem Soc. 1960;107:383–95.

    Article  CAS  Google Scholar 

  64. Pohl HA, Hawk I (1966) Separation of living and dead cells by dielectrophoresis. Science (80- ) 152:647–649.

  65. Crane JS, Pohl HA. A study of living and dead yeast cells using dielectrophoresis. J Electrochem Soc. 1968;115:584–6.

    Article  Google Scholar 

  66. Pohl HA, Crane JS. Dielectrophoresis of cells. Biophys J. 1971;11:711–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pohl HA. Dielectrophoresis. Cambridge: Cambridge University Press; 1978.

    Google Scholar 

  68. Pohl HA, Pohl HA. Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields: Cambridge university press Cambridge; 1978.

    Google Scholar 

  69. Hughes MP. Fifty years of dielectrophoretic cell separation technology. Biomicrofluidics. 2016;10:032801. https://doi.org/10.1063/1.4954841.

  70. Pethig R. Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics. 2010;4:022811.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pethig R. Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells. Crit Rev Biotechnol. 1996;16:331–48.

    Article  Google Scholar 

  72. Masuda S, Washizu M, Nanba T. Novel method of cell fusion in field constriction area in fluid integrated circuit. IEEE Trans Ind Appl. 1989;25:732–7.

    Article  Google Scholar 

  73. Gel M, Kimura Y, Kurosawa O, Oana H, Kotera H, Washizu M. Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array. Biomicrofluidics. 2010;4:22808.

    Article  Google Scholar 

  74. Cummings EB, Singh AK. Dielectrophoretic trapping without embedded electrodes. In: Becker H, editor. Mastrangelo CH. CA: Proc. SPIE. Santa Clara; 2000. p. 151–60.

    Google Scholar 

  75. Cummings EB (2002) A comparison of theoretical and experimental electrokinetic and dielectrophoretic flow fields. In: 32nd AIAA Fluid Dyn. Conf. Exhib. 2002. American Institute of Aeronautics and Astronautics, St. Louis, Missouri, pp. 1–17.

  76. Cummings EB, Singh AK. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem. 2003;75:4724–31.

    Article  CAS  PubMed  Google Scholar 

  77. Cummings EB. Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Eng Med Biol Mag. 2003;22:75–84.

    Article  PubMed  Google Scholar 

  78. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y. Dielectrophoretic concentration and separation of live and dead Bacteria in an array of insulators. Anal Chem. 2004;76:1571–9.

    Article  CAS  PubMed  Google Scholar 

  79. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis. 2004;25:1695–704.

    Article  CAS  PubMed  Google Scholar 

  80. Lapizco-Encinas BH, Davalos R V., Simmons BA, Cummings EB, Fintschenko Y. An insulator-based(electrodeless) dielectrophoretic concentrator for microbes in water. In: J. Microbiol. Methods. 2005;62:317–326.

  81. Gallo-Villanueva RC, Rodríguez-López CE, Díaz-de-la-Garza RI, Reyes-Betanzo C, Lapizco-Encinas BH. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields. Electrophoresis. 2009;30:4195–205.

    Article  CAS  PubMed  Google Scholar 

  82. Chou CF, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH. Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J. 2002;83:2170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chou CF, Zenhausern F. Electrodeless dielectrophoresis for micro total analysis systems. IEEE Eng Med Biol Mag. 2003;22:62–7.

    Article  PubMed  Google Scholar 

  84. Ramirez-Murillo CJ, de los Santos-Ramirez JM, Perez-Gonzalez VH. Toward low-voltage dielectrophoresis-based microfluidic systems: a review. Electrophoresis. 2021;42:565–587.

  85. Benhal P, Quashie D, Kim Y, Ali J. Insulator based dielectrophoresis: Micro, nano, and molecular scale biological applications. Sensors (Switzerland). 2020;20:1–24.

    Article  Google Scholar 

  86. Saucedo-Espinosa MA, Lapizco-Encinas BH. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: effect of particle size and shape. Electrophoresis. 2015;36:1086–97.

    Article  CAS  PubMed  Google Scholar 

  87. Mela P, van den Berg A, Fintschenko Y, Cummings EB, Simmons BA, Kirby BJ. The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Electrophoresis. 2005;26:1792–9.

    Article  CAS  PubMed  Google Scholar 

  88. Braff WA, Pignier A, Buie CR. High sensitivity three-dimensional insulator-based dielectrophoresis. Lab Chip. 2012;12:1327–31.

    Article  CAS  PubMed  Google Scholar 

  89. Lapizco-Encinas BH, Ozuna-Chacón S, Rito-Palomares M. Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. J Chromatogr A. 2008;1206:45–51.

    Article  CAS  PubMed  Google Scholar 

  90. Gallo-Villanueva RC, Jesús-Pérez NM, Martínez-López JI, Pacheco A, Lapizco-Encinas BH. Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluid Nanofluid. 2011;10:1305–15.

    Article  CAS  Google Scholar 

  91. LaLonde A, Romero-Creel MF, Saucedo-Espinosa MA, Lapizco-Encinas BH. Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis. Biomicrofluidics. 2015;9:064113.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Saucedo-Espinosa MA, Lalonde A, Gencoglu A, Romero-Creel MF, Dolas JR, Lapizco-Encinas BH. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis. 2016;37:282–90.

    Article  CAS  PubMed  Google Scholar 

  93. Gencoglu A, Olney D, Lalonde A, Koppula KS, Lapizco-Encinas BH. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis. Electrophoresis. 2014;35:362–73.

    Article  CAS  PubMed  Google Scholar 

  94. Romero-Creel MF, Goodrich E, Polniak DV, Lapizco-Encinas BH. Assessment of sub-micron particles by exploiting charge differences with dielectrophoresis. Micromachines. 2017. https://doi.org/10.3390/mi8080239.

  95. Saucedo-Espinosa MA, Rauch MM, Lalonde A, Lapizco-Encinas BH. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems. Electrophoresis. 2016;37:635–44.

    Article  CAS  PubMed  Google Scholar 

  96. Hill N, Lapizco-Encinas BH. Continuous flow separation of particles with insulator-based dielectrophoresis chromatography. Anal Bioanal Chem. 2020;412:3891–902.

    Article  CAS  PubMed  Google Scholar 

  97. LaLonde A, Gencoglu A, Romero-Creel MF, Koppula KS, Lapizco-Encinas BH. Effect of insulating posts geometry on particle manipulation in insulator based dielectrophoretic devices. J Chromatogr A. 2014;1344:99–108.

    Article  CAS  PubMed  Google Scholar 

  98. Saucedo-Espinosa MA, Lapizco-Encinas BH. Design of insulator-based dielectrophoretic devices: effect of insulator posts characteristics. J Chromatogr A. 2015;1422:325–33.

    Article  CAS  PubMed  Google Scholar 

  99. Perez-Gonzalez VH, Gallo-Villanueva RC, Cardenas-Benitez B, Martinez-Chapa SO, Lapizco-Encinas BH. Simple approach to reducing particle trapping voltage in insulator-based dielectrophoretic systems. Anal Chem. 2018;90:4310–5.

    Article  CAS  PubMed  Google Scholar 

  100. Lentz CJ, Hidalgo-Caballero S, Lapizco-Encinas BH. Low frequency cyclical potentials for fine tuning insulator-based dielectrophoretic separations. Biomicrofluidics. 2019;13:044114.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mata-Gomez MA, Perez-Gonzalez VH, Gallo-Villanueva RC, Gonzalez-Valdez J, Rito-Palomares M, Martinez-Chapa SO. Modelling of electrokinetic phenomena for capture of PEGylated ribonuclease a in a microdevice with insulating structures. Biomicrofluidics. 2016;10:33106.

    Article  Google Scholar 

  102. Ayala-Mar S, Perez-Gonzalez VH, Mata-Gómez MA, Gallo-Villanueva RC, Gonzalez-Valdez J. Electrokinetically driven exosome separation and concentration using dielectrophoretic-enhanced PDMS-based microfluidics. Anal Chem. 2019;91:14975–82.

    Article  CAS  PubMed  Google Scholar 

  103. Pesch GR, Kiewidt L, Du F, Baune M, Thöming J. Electrodeless dielectrophoresis: impact of geometry and material on obstacle polarization. Electrophoresis. 2016;37:291–301.

    Article  CAS  PubMed  Google Scholar 

  104. Pesch GR, Du F, Baune M, Thöming J. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis. J Chromatogr A. 2017;1483:127–37.

    Article  CAS  PubMed  Google Scholar 

  105. Mohammadi M, Zare MJ, Madadi H, Sellarès J, Casals-Terré J. A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping. Anal Bioanal Chem. 2016;408:5285–94.

    Article  CAS  PubMed  Google Scholar 

  106. Gan L, Chao T-CC, Camacho-Alanis F, Ros A. Six-helix bundle and triangle DNA origami insulator-based dielectrophoresis. Anal Chem. 2013;85:11427–34.

    Article  CAS  PubMed  Google Scholar 

  107. Nakano A, Chao T-CC, Camacho-Alanis F, Ros A. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis. 2011;32:2314–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nakano A, Camacho-Alanis F, Ros A. Insulator-based dielectrophoresis with [small beta]-galactosidase in nanostructured devices. Analyst. 2015;140:860–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rabbani MT, Schmidt CF, Ros A. Single-walled carbon nanotubes probed with insulator-based dielectrophoresis. Anal Chem. 2017;89:13235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Luo J, Abdallah BG, Wolken GG, Arriaga EA, Ros A. Insulator-based dielectrophoresis of mitochondria. Biomicrofluidics. 2014;8:1–11.

    Article  Google Scholar 

  111. Bhattacharya S, Chao T-CC, Ros A. Insulator-based dielectrophoretic single particle and single cancer cell trapping. Electrophoresis. 2011;32:2550–8.

    Article  CAS  PubMed  Google Scholar 

  112. Bhattacharya S, Chao T-CC, Ariyasinghe N, Ruiz Y, Lake D, Ros R, Ros A. Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Anal Bioanal Chem. 2014;406:1855–65.

    Article  CAS  PubMed  Google Scholar 

  113. Calero V, Garcia-Sanchez P, Ramos A, Morgan H. Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation. Biomicrofluidics. 2019;13:054110.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Calero V, Garcia-Sanchez P, Honrado C, Ramos A, Morgan H. AC electrokinetic biased deterministic lateral displacement for tunable particle separation. Lab Chip. 2019;19:1386–96.

    Article  CAS  PubMed  Google Scholar 

  115. Calero V, García-Sánchez P, Ramos A, Morgan H. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations. J Chromatogr A. 1623;2020:461151.

  116. Pysher MD, Hayes MA. Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem. 2007;79:4552–7.

    Article  CAS  PubMed  Google Scholar 

  117. Weiss NG, Jones PV, Mahanti P, Chen KP, Taylor TJ, Hayes MA. Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis. Electrophoresis. 2011;32:2292–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Crowther CV, Sanderlin V, Hayes MA, Gile GH. Effects of surface treatments on trapping with DC insulator-based dielectrophoresis. Analyst. 2019;144:7478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jones PV, DeMichele AF, Kemp LK, Hayes MA. Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis. Anal Bioanal Chem. 2014;406:183–92.

    Article  CAS  PubMed  Google Scholar 

  120. Ding J, Lawrence RM, Jones PV, Hogue BG, Hayes MA. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst. 2016;141:1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jones PV, Staton SJR, Hayes MA. Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem. 2011;401:2103–11.

    Article  CAS  PubMed  Google Scholar 

  122. Staton SJRR, Chen KP, Taylor TJ, Pacheco JR, Hayes MA. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Electrophoresis. 2010;31:3634–41.

    Article  CAS  PubMed  Google Scholar 

  123. Crowther CV, Hilton SH, Kemp LK, Hayes MA. Isolation and identification of listeria monocytogenes utilizing DC insulator-based dielectrophoresis. Anal Chim Acta. 2019;1068:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu Y, Jiang A, Kim E, Ro C, Adams T, Flanagan LA, Taylor TJ, Hayes MA. Identification of neural stem and progenitor cell subpopulations using DC insulator-based dielectrophoresis. Analyst. 2019;144:4066–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jones PV, Hayes MA. Development of the resolution theory for gradient insulator-based dielectrophoresis. Electrophoresis. 2015;36:1098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Crowther CV, Hayes MA. Refinement of insulator-based dielectrophoresis. Analyst. 2017;142:1608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Weirauch L, Lorenz M, Hill N, Lapizco-Encinas BH, Baune M, Pesch GR, Thöming J. Material-selective separation of mixed microparticles via insulator-based dielectrophoresis. Biomicrofluidics. 2019;13:064112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lu S-YY, Malekanfard A, Beladi-Behbahani S, Zu W, Kale A, Tzeng T-RR, Wang Y-NN, Xuan X. Passive dielectrophoretic focusing of particles and cells in ratchet microchannels. Micromachines. 2020;11:451.

    Article  PubMed Central  Google Scholar 

  129. Malekanfard A, Beladi-Behbahani S, Tzeng T-R, Zhao H, Xuan X. AC insulator-based dielectrophoretic focusing of particles and cells in an “infinite” microchannel. Anal Chem. 2021;93:5947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Malekanfard A, Liu Z, Song L, Kale A, Zhang C, Yu L, Song Y, Xuan X. Joule heating-enabled electrothermal enrichment of nanoparticles in insulator-based dielectrophoretic microdevices. Electrophoresis. 2021;42:626–34.

    Article  CAS  PubMed  Google Scholar 

  131. Bentor J, Malekanfard A, Raihan MK, Wu S, Pan X, Song Y, Xuan X. Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids. Electrophoresis. 2021;00:1–8.

    Google Scholar 

  132. Liao K-TT, Tsegaye M, Chaurey V, Chou C-FF, Swami NS. Nano-constriction device for rapid protein preconcentration in physiological media through a balance of electrokinetic forces. Electrophoresis. 2012;33:1958–66.

    Article  CAS  PubMed  Google Scholar 

  133. Sanghavi BJ, Varhue W, Rohani A, Liao K-TT, Bazydlo LALL, Chou C-FF, Swami NS. Ultrafast immunoassays by coupling dielectrophoretic biomarker enrichment in nanoslit channel with electrochemical detection on graphene. Lab Chip. 2015;15:4563–70.

    Article  CAS  PubMed  Google Scholar 

  134. Swami N, Chou C-FF, Ramamurthy V, Chaurey V. Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. Lab Chip. 2009;9:3212–20.

    Article  CAS  PubMed  Google Scholar 

  135. Mohammadi M, Madadi H, Casals-Terré J, Sellarès J. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. Anal Bioanal Chem. 2015;407:4733–44.

    Article  CAS  PubMed  Google Scholar 

  136. Hyoung Kang K, Xuan X, Kang Y, Li D, Kang KH, Xuan X, Kang Y, Li D. Effects of dc-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys. 2006;99:64702–8.

    Article  Google Scholar 

  137. Kang KH, Kang Y, Xuan X, Li D. Continuous separation of microparticles by size with direct current-dialectrophoresis. Electrophoresis. 2006;27:694–702.

    Article  CAS  PubMed  Google Scholar 

  138. Kang Y, Li D, Kalams SA, Eid JE. DC-dielectrophoretic separation of biological cells by size. Biomed Microdevices. 2008;10:243–9.

    Article  PubMed  Google Scholar 

  139. Kang Y, Cetin B, Wu Z, Li D. Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta. 2009;54:1715–20.

    Article  CAS  Google Scholar 

  140. Hawkins BG, Kirby BJ. Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems. Electrophoresis. 2010;31:3622–33.

    Article  CAS  PubMed  Google Scholar 

  141. Srivastava SK, Baylon-Cardiel JL, Lapizco-Encinas BH, Minerick AR. A continuous DC-insulator dielectrophoretic sorter of microparticles. J Chromatogr A. 2011;1218:1780–9.

    Article  CAS  PubMed  Google Scholar 

  142. Srivastava SK, Artemiou A, Minerick AR. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis. 2011;32:2530–40.

    Article  CAS  PubMed  Google Scholar 

  143. Abdallah BG, Roy-Chowdhury S, Coe J, et al. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Struct Dyn. 2015;2:41719.

    Article  Google Scholar 

  144. Abdallah BG, Roy-Chowdhury S, Coe J, Fromme P, Ros A. High throughput protein nanocrystal fractionation in a microfluidic sorter. Anal Chem. 2015;87:4159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhu J, Xuan X. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields. Electrophoresis. 2009;30:2668–75.

    Article  CAS  PubMed  Google Scholar 

  146. Patel S, Qian S, Xuan X. Reservoir-based dielectrophoresis for microfluidic particle separation by charge. Electrophoresis. 2013;34:961–8.

    Article  CAS  PubMed  Google Scholar 

  147. Kale A, Patel S, Xuan X. Three-dimensional reservoir-based Dielectrophoresis (rDEP) for enhanced particle enrichment. Micromachines. 2018;9:123.

    Article  PubMed Central  Google Scholar 

  148. Shi L, Esfandiari L. An Electrokinetically-driven microchip for rapid entrapment and detection of nanovesicles. Micromachines. 2020;12:11.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Braff WA, Willner D, Hugenholtz P, Rabaey K, Buie CR. Dielectrophoresis-based discrimination of bacteria at the strain level based on their surface properties. PLoS One. 2013;8:e76751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang Q, Jones A-ADAD, Gralnick JA, Lin L, Buie CR. Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci Adv. 2019;5:eaat5664.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Pudasaini S, Perera ATK, Das D, Ng SH, Yang C. Continuous flow microfluidic cell inactivation with the use of insulating micropillars for multiple electroporation zones. Electrophoresis. 2019;40:2522–9.

    CAS  PubMed  Google Scholar 

  152. Pudasaini S, Perera ATK, Ng SH, Yang C. Bacterial inactivation via microfluidic electroporation device with insulating micropillars. Electrophoresis. 2021;42:1093–101.

    Article  CAS  PubMed  Google Scholar 

  153. Church C, Zhu JJ, Wang GY, Tzeng TRJ, Xuan XC. Electrokinetic focusing and filtration of cells in a serpentine microchannel. Biomicrofluidics. 2009;3:44109–10.

    Article  PubMed  Google Scholar 

  154. Zhu J, Tzeng TRJ, Hu G, Xuan X. DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid. 2009;7:751–6.

    Article  CAS  Google Scholar 

  155. Zhu JJ, Xuan XC. Particle electrophoresis and dielectrophoresis in curved microchannels. J Colloid Interface Sci. 2009;340:285–90.

    Article  CAS  PubMed  Google Scholar 

  156. Zhu J, Xuan X. Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels. Biomicrofluidics. 2011;5:24111.

    Article  PubMed  Google Scholar 

  157. DuBose J, Lu X, Patel S, Qian S, Joo SW, Xuan X. Microfluidic electrical sorting of particles based on shape in a spiral microchannel. Biomicrofluidics. 2014;8:1–8.

    Article  Google Scholar 

  158. Kale A, Malekanfard A, Xuan X. Analytical guidelines for designing curvature-induced dielectrophoretic particle manipulation systems. Micromachines. 2020;11:707.

    Article  PubMed Central  Google Scholar 

  159. Kale A, Malekanfard A, Xuan X. Curvature-induced dielectrophoretic particle manipulation systems. Micromachines. 2020;11:707.

    Article  PubMed Central  Google Scholar 

  160. Zhu J, Canter RC, Keten G, Vedantam P, Tzeng T-RRJ, Xuan X. Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis. Microfluid Nanofluid. 2011;11:743–52.

    Article  CAS  Google Scholar 

  161. Li M, Li S, Li W, Wen W, Alici G. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis. Electrophoresis. 2013;34:952–60.

    Article  CAS  PubMed  Google Scholar 

  162. Ying LM, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D. Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys J. 2004;86:1018–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Clarke RW, White SS, Zhou D, Ying L, Klenerman D. Trapping of proteins under physiological conditions in a nanopipette. Angew Chem Int Ed. 2005;44:3747–50.

    Article  CAS  Google Scholar 

  164. Clarke RW, Piper JD, Ying L, Klenerman D. Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis. Phys Rev Lett. 2007;98:198102.1–4.

    Article  Google Scholar 

  165. Shi L, Rana A, Esfandiari L. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Sci Rep. 2018;8:6751.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Shi L, Kuhnell D, Borra VJ, Langevin SM, Nakamura T, Esfandiari L. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device. Lab Chip. 2019;19:3726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jones PV, DeMichele AF, Kemp LK, Hayes MA. Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis. Anal Bioanal Chem. 2014;406:183–92.

    Article  CAS  PubMed  Google Scholar 

  168. Cho Y-KK, Kim S, Lee K, Park C, Lee J-GG, Ko C. Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis. 2009;30:3153–9.

    Article  CAS  PubMed  Google Scholar 

  169. Mukaibo H, Wang T, Perez-Gonzalez VH, Getpreecharsawas J, Wurzer J, Lapizco-Encinas BH, McGrath JL. Ultrathin nanoporous membranes for insulator-based dielectrophoresis. Nanotechnology. 2018;29:235704 (10pp).

    Article  PubMed  Google Scholar 

  170. Suehiro J, Zhou GB, Imamura M, Hara M. Dielectrophoretic filter for separation and recovery of biological cells in water. IEEE Trans Ind Appl. 2003;39:1514–21.

    Article  Google Scholar 

  171. Jun S, Chun C, Ho K, Li Y. Design and evaluation of a millifluidic insulator-based dielectrophoresis (DEP) retention device to separate bacteria from tap water. Water. 2021;13:1678.

  172. Baylon-Cardiel JL, Lapizco-Encinas BH, Reyes-Betanzo C, Chávez-Santoscoy AV, Martínez-Chapa SO. Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab Chip. 2009;9:2896–901.

    Article  CAS  PubMed  Google Scholar 

  173. Jesús-Pérez NM, Lapizco-Encinas BH. Dielectrophoretic monitoring of microorganisms in environmental applications. Electrophoresis. 2011;32:2331–57.

    PubMed  Google Scholar 

  174. Gallo-Villanueva RC, Pérez-González VH, Davalos RV, Lapizco-Encinas BH. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Electrophoresis. 2011;32:2456–65.

    Article  CAS  PubMed  Google Scholar 

  175. Hill N, Lapizco-Encinas BH. On the use of correction factors for the mathematical modeling of insulator based dielectrophoretic devices. Electrophoresis. 2019;40:2541–52.

    CAS  PubMed  Google Scholar 

  176. Kwon JS, Maeng JS, Chun MS, Song S. Improvement of microchannel geometry subject to electrokinesis and dielectrophoresis using numerical simulations. Microfluid Nanofluid. 2008;5:23–31.

    Article  CAS  Google Scholar 

  177. M. KS, Dukhin SS, Vidov OI. Aperiodic electrophoresis. Colloid J. 1994;56:579–85.

    Google Scholar 

  178. Voldman J. Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng. 2006;8:425–54.

    Article  CAS  PubMed  Google Scholar 

  179. Hilton SH, Hayes MA. A mathematical model of dielectrophoretic data to connect measurements with cell properties. Anal Bioanal Chem. 2019;411:2223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Miller A, Hill N, Hakim K, Lapizco-Encinas BH. Fine-tuning electrokinetic injections considering nonlinear electrokinetic effects in insulator-based devices. Micromachines 2021. 2021;12:628.

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support provided by the National Science Foundation (CBET- 1705895).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca H. Lapizco-Encinas.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

Informed consent is not applicable in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapizco-Encinas, B.H. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Anal Bioanal Chem 414, 885–905 (2022). https://doi.org/10.1007/s00216-021-03687-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03687-9

Keywords

Navigation