Skip to main content
Log in

DC dielectrophoretic focusing of particles in a serpentine microchannel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Focusing particles into a tight stream is usually a necessary step prior to separating and sorting them. We present herein a proof-of-concept experiment of a novel particle focusing technique in DC electrokinetic flow through a planar serpentine microchannel. This focusing stems from the cross-stream dielectrophoretic motion induced within the channel turns. The observed particle focusing behavior is consistent with the predicted particle trajectories from a numerical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JL (1989) Colloidal transport by interfacial forces. Annu Rev Fluid Mech 21:61–99

    Article  Google Scholar 

  • Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR et al (2008) The good, the bad, the tiny: a review of microflow cytometry. Anal Bioanal Chem 391:1485–1498

    Article  Google Scholar 

  • Chang CC, Huang ZY, Yang RJ (2007) Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. J Micromech Microeng 17:1479–1486

    Article  Google Scholar 

  • Cheng IF, Chang HC, Hou D, Chang HC (2007) An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1:021503

    Article  Google Scholar 

  • Choi C, Park JK (2008) Sheathless Hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays. Anal Chem 80:3035–3039

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park JK (2007) Sheathless focusing of microbeads and blood cells based on hydrophoresis. Small 4:634–641

    Article  Google Scholar 

  • Chung TD, Kim HC (2007) Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28:4511–4520

    Article  Google Scholar 

  • Cummings EB, Singh AK (2003) Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results. Anal Chem 75:4724–4731

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  Google Scholar 

  • Ermolina I, Morgan H (2005) The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis. J Colloid Interf Sci 285:419–428

    Article  Google Scholar 

  • Fu LM, Yang RJ, Lee GB (2003) Electrokinetic focusing injection methods on microfluidic devices. Anal Chem 75:1905–1910

    Article  Google Scholar 

  • Hawkins BG, Smith AE, Syed YA, Kirby BJ (2007) Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields. Anal Chem 79:7291–7300

    Article  Google Scholar 

  • Huh D, Gu W, Kamotani Y, Grotgerg JB, Takayama S (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26:R73–R98

    Article  Google Scholar 

  • Kang K, Kang Y, Xuan X, Li D (2006a) Continuous separation of microparticles by size with DC-dielectrophoresis. Electrophoresis 27:694–702

    Article  Google Scholar 

  • Kang K, Xuan X, Kang Y, Li D (2006b) Effects of the DC-dielectrophoretic force on particle trajectories in microchannels. J Appl Phys 99:064702

    Article  Google Scholar 

  • Kohlheyer D, Unnikrishnan S, Besselink GAJ, Schlautmann S, Schasfoort RBM (2008) A microfluidic device for array patterning by perpendicular electrokinetic focusing. Microfluid Nanofluid 4:557–564

    Article  Google Scholar 

  • Lee GB, Chang CC, Huang SB, Yang RJ (2006) The hydrodynamic focusing effect in rectangular microchannels. J Micromech Microeng 16:1024–1032

    Article  Google Scholar 

  • Lewpiriyawong N, Yang C, Lam YC (2008) Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Biomicrofluidics 2:034105

    Article  Google Scholar 

  • Lin CH, Lee GB, Fu LM, Hwey BH (2004) Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer. J Microelectromech Syst 13:923–932

    Article  Google Scholar 

  • Mao XL, Waldeisen JR, Huang TJ (2007) “Microfluidic drifting”—implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7:1260–1262

    Article  Google Scholar 

  • Morgan H, Green NG (2002) AC Electrokinetic: Colloids and Nanoparticles. Research Studies Press, Hertfordshire, UK

    Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Article  Google Scholar 

  • Santiago JG (2001) Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal Chem 73:2353–2365

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007a) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91:033901

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007b) Membraneless microseparation by asymmetry in curvilinear laminar flows. J Chromatogr A 1162:126–131

    Article  Google Scholar 

  • Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface. Lab Chip 8:221–223

    Article  Google Scholar 

  • Shilov VN, Delgadob AV, González-Caballero F, Horno J, López-García JJ, Grosse C (2000) Polarization of the electrical double layer. Time evolution after application of an electric field. J Colloid Interf Sci 232:141–148

    Article  Google Scholar 

  • Simonnet C, Groisman A (2006) High-throughput and high-resolution flow cytometry in molded microfluidic devices. Anal Chem 78:5653–5663

    Article  Google Scholar 

  • Takahashi T, Ogata S, Nishizawa M, Matsue T (2003) A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream. Electrochem Commun 5:175–177

    Article  Google Scholar 

  • Thamida SK, Chang HC (2002) Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges. Phys Fluid 14:4315–4328

    Article  Google Scholar 

  • Thwar PK, Linderman JJ, Burns MA (2007) Electrodeless direct current dielectrophoresis using reconfigurable field-shaping oil barriers. Electrophoresis 28:4572–4581

    Article  Google Scholar 

  • Tornay R, Braschler T, Demierre N, Steitz B et al (2008) Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles. Lab Chip 8:267–273

    Article  Google Scholar 

  • Tsai CG, Hou HH, Fu LM (2008) An optimal three-dimensional focusing technique for micro-flow cytometers. Microfluid Nanofluid 5:827–836

    Article  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  • Xuan X, Li D (2005) Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels. Electrophoresis 26:3552–3560

    Article  Google Scholar 

  • Xuan X, Xu B, Li D (2005) Accelerated particle electrophoretic motion and separation in converging-diverging microchannels. Anal Chem 77:4323–4328

    Article  Google Scholar 

  • Xuan X, Raghibizadeh S, Li D (2006) Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel. J Colloid Interf Sci 296:743–748

    Article  Google Scholar 

  • Yang RJ, Chang CC, Huang SB, Lee GB (2005) A new focusing model and switching approach for electrokinetic flow inside microchannels. J Micromech Microeng 15:2141–2148

    Article  Google Scholar 

  • Yu C, Vykoukal J, Vykoukal DM, Schwartz JA et al (2005) A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J Microelectromech Syst 14:480–487

    Article  Google Scholar 

  • Zhao Y, Fujimoto BS, Jeffries GDM, Schiro PG, Chiu DT (2007) Optical gradient flow focusing. Opt Express 15:6167–6176

    Article  Google Scholar 

Download references

Acknowledgments

The support from Clemson University through a start-up package and a Research Equipment Fund to Xuan is gratefully acknowledged. The support from the State Key Laboratory of Nonlinear Mechanics in China is also gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangchun Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Tzeng, TR.J., Hu, G. et al. DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid 7, 751 (2009). https://doi.org/10.1007/s10404-009-0432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-009-0432-7

Keywords

Navigation