Skip to main content
Log in

A mathematical model of dielectrophoretic data to connect measurements with cell properties

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Dielectrophoresis (DEP) brings about the high-resolution separations of cells and other bioparticles arising from very subtle differences in their properties. However, an unanticipated limitation has arisen: difficulty in assignment of specific biological features which vary between two cell populations. This hampers the ability to interpret the significance of the variations. To realize the opportunities made possible by dielectrophoresis, the data and the diversity of structures found in cells and bioparticles must be linked. While the crossover frequency in DEP has been studied in-depth and exploited in applications using AC fields, less attention has been given when a DC field is present. Here, a new mathematical model of dielectrophoretic data is introduced which connects the physical properties of cells to specific elements of the data from potential- or time-varied DEP experiments. The slope of the data in either analysis is related to the electrokinetic mobility, while the potential at which capture initiates in potential-based analysis is related to both the electrokinetic and dielectrophoretic mobilities. These mobilities can be assigned to cellular properties for which values appear in the literature. Representative examples of high and low values of properties such as conductivity, zeta potential, and surface charge density for bacteria including Streptococcus mutans, Rhodococcus erythropolis, Pasteurella multocida, Escherichia coli, and Staphylococcus aureus are considered. While the many properties of a cell collapse into one or two features of data, for a well-vetted system the model can indicate the extent of dissimilarity. The influence of individual properties on the features of dielectrophoretic data is summarized, allowing for further interpretation of data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

c :

Capture onset potential

CM(n) :

General Clausius-Mossotti factor

d :

Distance

DEP:

Dielectrophoresis

e :

Electric unit charge

E :

Electric field strength

E ave :

Average electric field magnitude

E ave(V):

Average electric field magnitude as a function of the applied potential

eDEP:

Electrode-based dielectrophoresis

E max :

Electric field local maximum magnitude

E max(V):

Electric field local maximum magnitude as a function of the applied potential

F :

Dielectrophoretic force

f CM :

Clausius-Mossotti factor

FI:

Fluorescence intensity

FIobs :

Observed fluorescence intensity

h :

Height

I :

Identity tensor

iDEP:

Insulator-based dielectrophoresis

n :

Average particle density

N :

Number of particles

N c :

Surface charge density

p n :

nth-order multipolar moment

r :

Radius

s :

Stack factor

t :

Time

v :

Velocity

V :

Applied potential

v DEP :

Dielectrophoretic velocity

v EK :

Electrokinetic velocity

v EOF :

Electroosmotic velocity

v EP :

Electrophoretic velocity

w :

Average width

z :

Valence of charged groups

β 0 :

Monopole moment

β 2 :

Quadrupole moment

γ :

Nominal integrated fluorescence signal for an average particle

ε :

Permittivity

ε :

Complex permittivity

ζ :

Zeta potential

η :

Viscosity

κ m :

Debye-Huckel parameter

λ −1 :

Surface softness

μ DEP :

Dielectrophoretic mobility

μ EK :

Electrokinetic mobility

μ EOF :

Electroosmotic mobility

μ EP :

Electrophoretic mobility

\( {\varPhi}_{r_{\mathrm{int}}} \) :

Electric potential due to the particle

ψ(0):

Potential at the boundary

ψ DON :

Donnan potential

References

  1. Pohl HA. The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys. 1951;22:869–71.

    Article  CAS  Google Scholar 

  2. Pethig R. Where is dielectrophoresis (dep) going? J Electrochem Soc. 2016;164:B3049–B55.

    Article  CAS  Google Scholar 

  3. Asbury CL, Dierks AH, van den Engh G. Trapping of DNA by dielectrophoresis. Electrophoresis. 2002;23:2658–66.

    Article  CAS  PubMed  Google Scholar 

  4. Chou C-F, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, et al. Electrodless dielectrophoresis of single- and double-stranded DNA. Biophys J. 2002;83:2170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gascoyne PRC, Noshari J, Anderson TJ, Becker FF. Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis. 2009;30:1388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones PV, DeMichele AF, Kemp L, Hayes MA. Differentiation of Escherichia coli serotypes using dc gradient insulator dielectrophoresis. Anal Bioanal Chem. 2014;406:183–92.

    Article  CAS  PubMed  Google Scholar 

  7. Lapizco-Encinas BH, Ozuna-Chacon S, Rito-Palomares M. Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. J Chromatogr A. 2008;1206:45–51.

    Article  CAS  PubMed  Google Scholar 

  8. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem. 2004;76:1571–9.

    Article  CAS  PubMed  Google Scholar 

  9. Markx GH, Huang Y, Zhou X-F, Pethig R. Dielectrophoretic characterization and separation of micro-organisms. Microbiology. 1994;140:585–91.

    Article  Google Scholar 

  10. Otto S, Kaletta U, Bier FF, Wenger C, Holzel R. Dielectrophoretic immobilisation of antibodies on microelectrode arrays. Lab Chip. 2014;14:998–1004.

    Article  CAS  PubMed  Google Scholar 

  11. Regtmeier J, Duong TT, Eichhorn R, Anselmetti D, Ros A. Dielectrophoretic manipulation of DNA: separation and polarizability. Anal Chem. 2007;79:3925–32.

    Article  CAS  PubMed  Google Scholar 

  12. Staton SJR, Jones PV, Ku G, Gilman SD, Kheterpal I, Hayes MA. Manipulation and capture of abeta amyloid fibrils and monomers by dc insulator gradient dielectrophoresis (dc-igdep). Analyst. 2012;137:3227–9.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X-B, Huang Y, Burt JPH, Markx GH, Pethig R. Selective dielectrophoretic confinement of bioparticles in potential energy wells. J Phys D Appl Phys. 1993;26:1276–85.

    Google Scholar 

  14. Washizu M, Suzuki S, Kurosawa O, Nishizaka T, Shinohara T. Molecular dielectrophoresis of biopolymers. IEEE Trans Ind Appl. 1994;30:835–43.

    Article  CAS  Google Scholar 

  15. Adams TNG, Leonard KM, Minerick AR. Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells. Biomicrofluidics. 2013;7:64114.

    Article  CAS  PubMed  Google Scholar 

  16. Jones PV, Staton SJR, Hayes MA. Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem. 2011;401:2103–11.

    Article  CAS  PubMed  Google Scholar 

  17. Huang Y, Holzel R, Pethig R, Wang X-B. Differences in the ac electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol. 1992;37:1499–517.

    Article  CAS  PubMed  Google Scholar 

  18. Jones TB. Electromechanics of particles. New York: Cambridge University Press; 1995.

    Book  Google Scholar 

  19. Pethig R. Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics. 2010;4:022811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pohl HA. Dielectrophoresis the behavior of neutral matter in nonuniform electric fields. New York: Cambridge University Press; 1978.

    Google Scholar 

  21. Washizu M, Jones TB. Multipolar dielectrophoretic force calculation. J Electrost. 1994;33:187–98.

    Article  Google Scholar 

  22. Crane JS, Pohl HA. The dielectric properties of single yeast cells. J Electrost. 1978;5:11–9.

    Article  Google Scholar 

  23. Gagnon ZR. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis. 2011;32:2466–87.

    Article  CAS  PubMed  Google Scholar 

  24. Cummings EB, Singh AK. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem. 2003;75:4724–31.

    Article  CAS  PubMed  Google Scholar 

  25. Becker FF, Wang X-B, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A. 1995;92:860–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rohani A, Moore JH, Kashatus JA, Sesaki H, Kashatus DF, Swami NS. Label-free quantification of intracellular mitochondrial dynamics using dielectrophoresis. Anal Chem. 2017;89:5757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams TNG, Jiang AYL, Vyas PD, Flanagan LA. Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis. Methods. 2018;133:91–103.

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava SK, Daggolu PR, Burgess SC, Minerick AR. Dielectrophoretic characterization of erythrocytes: positive abo blood types. Electrophoresis. 2008;29:5033–46.

    Article  CAS  PubMed  Google Scholar 

  29. Jones PV, Huey S, Davis P, Yanashima R, McLemore R, McLaren A, et al. Biophysical separation of Staphylococcus epidermidis strains based on antibiotic resistance. Analyst. 2015;140:5152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braff WA, Willner D, Hugenholtz P, Rabaey K, Buie CR. Dielectrophoresis-based discrimination of bacteria at the strain level based on their surface properties. PLoS One. 2013;8:e76751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jones PV, Hayes MA. Development of the resolution theory for gradient insulator-based dielectrophoresis. Electrophoresis. 2015;36:1098–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. LaLonde A, Romero-Creel MF, Saucedo-Espinosa MA, Lapizco-Encinas BH. Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis. Biomicrofluidics. 2015;9:064113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Minerick AR. The rapidly growing field of micro and nanotechnology to measure living cells. AICHE J. 2008;54:2230–7.

    Article  CAS  Google Scholar 

  34. Saucedo-Espinosa MA, Lapizco-Encinas BH. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: effect of particle size and shape. Electrophoresis. 2015;36:1086–97.

    Article  CAS  PubMed  Google Scholar 

  35. Staton SJR, Chen KP, Taylor TJ, Pacheco JR, Hayes MA. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device. Electrophoresis. 2010;31:3634–41.

    Article  CAS  PubMed  Google Scholar 

  36. Davies JT, Rideal EK. Interfacial phenomena. New York: Academic Press; 1961.

    Google Scholar 

  37. Nguyen N-T, Wereley ST. Fundamentals and applications of microfluidics. 2nd ed. Boston: Artech House; 2006.

    Google Scholar 

  38. Tabeling P. Introduction to microfluidics. New York: Oxford University Press; 2005.

    Google Scholar 

  39. Clarke RW, Piper JD, Ying L, Klenerman D. Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis. Phys Rev Lett. 2007;98:198102.

    Article  CAS  PubMed  Google Scholar 

  40. Nili H, Green NG. Higher-order dielectrophoresis of nonspherical particles. Phys Rev E Stat Nonlinear Soft Matter Phys. 2014;89:063302.

    Article  CAS  Google Scholar 

  41. Irimajiri A, Hanai T, Inoyue A. A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell. J Theor Biol. 1979;78:251–69.

    Article  CAS  PubMed  Google Scholar 

  42. Bai W, Zhao K, Asami K. Effects of copper on dielectric properties of E. coli cells. Colloids Surf B. 2007;58:105–15.

    Article  CAS  Google Scholar 

  43. Kakutani T, Shibatani S, Sugai M. Electrorotation of non-spherical cells: theory for ellipsoidal cells with an arbitrary number of shells. Bioelectrochem Bioenerg. 1993;31:131–45.

    Article  Google Scholar 

  44. Ohshima H, Kondo T. Electrophoretic mobility and Donnan potential of a large colloidal particle with a surface charge layer. J Colloid Interface Sci. 1987;116:305–11.

    Article  CAS  Google Scholar 

  45. Ohshima H, Kondo T. Approximate analytic expression for the electrophoretic mobility of colloidal particles with surface-charge layers. J Colloid Interface Sci. 1989;130:281–2.

    Article  CAS  Google Scholar 

  46. Sonohara R, Muramatsu N, Ohshima H, Kondo T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem. 1995;55:273–7.

    Article  CAS  PubMed  Google Scholar 

  47. Daly E, Saunders BR. Temperature–dependent electrophoretic mobility and hydrodynamic radius measurements of poly(n-isopropylacrylamide) microgel particles: structural insights. Phys Chem Chem Phys. 2000;2:3187–93.

    Article  CAS  Google Scholar 

  48. Ortega-Vinuesa JL, Hidalgo-Alvarez R, de las Nieves FJ, Davey CL, Newman DJ, Price CP. Characterization of immunoglobulin g bound to latex particles using surface plasmon resonance and electrophoretic mobility. J Colloid Interface Sci. 1998;204:300–11.

    Article  CAS  PubMed  Google Scholar 

  49. Takashima S, Morisaki H. Surface characteristics of the microbial cell of pseudomonas syringae and its relevance to cell attachment. Colloids Surf B. 1997;9:205–12.

    Article  CAS  Google Scholar 

  50. Torimura M, Ito S, Kano K, Ikeda T, Esaka Y, Ueda T. Surface characterization and on-line activity measurements of microorganism by capillary zone electrophoresis. J Chromatogr B. 1999;721:31–7.

    Article  CAS  Google Scholar 

  51. Anderson JL. Effect of nonuniform zeta potential on particle movement in electric fields. J Colloid Interface Sci. 1985;105:45–54.

    Article  CAS  Google Scholar 

  52. Fair MC, Anderson JL. Electrophoresis of nonuniformly charged ellipsoidal particles. J Colloid Interface Sci. 1989;127:388–400.

    Article  CAS  Google Scholar 

  53. Pysher MD, Hayes MA. Effects of deformability, uneven surface charge distributions, and multipole moments on biocolloid electrophoretic migration. Langmuir. 2005;21:3572–7.

    Article  CAS  PubMed  Google Scholar 

  54. Dinpajooh M, Matyushov DV. Dielectric constant of water in the interface. J Chem Phys. 2016;145:014504.

    Article  CAS  PubMed  Google Scholar 

  55. Dinpajooh M, Matyushov DV. Mobility of nanometer-size solutes in water driven by electric field. Phys A. 2016;463:366–75.

    Article  CAS  Google Scholar 

  56. Matyushov DV. Dipole solvation in dielectrics. J Chem Phys. 2004;120:1375–82.

    Article  CAS  PubMed  Google Scholar 

  57. Matyushov DV. Dipolar response of hydrated proteins. J Chem Phys. 2012;136:085102.

    Article  CAS  PubMed  Google Scholar 

  58. Matyushov DV. Electrophoretic mobility without charge driven by polarisation of the nanoparticle–water interface. Mol Phys. 2014;112:2029–39.

    Article  CAS  Google Scholar 

  59. Seyedi S, Matyushov DV. Dipolar susceptibility of protein hydration shells. Chem Phys Lett. 2018;712 accepted (preprint available from corresponding author).

  60. Crowther CV, Hayes MA. Refinement of insulator-based dielectrophoresis. Analyst. 2017;142:1608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Braff WA, Pignier A, Buie CR. High sensitivity three-dimensional insulator-based dielectrophoresis. Lab Chip. 2012;12:1327–31.

    Article  CAS  PubMed  Google Scholar 

  62. Camacho-Alanis F, Gan L, Ros A. Transitioning streaming to trapping in dc insulator-based dielectrophoresis for biomolecules. Sensors Actuators B Chem. 2012;173:668–75.

    Article  CAS  Google Scholar 

  63. Ding J, Lawrence RM, Jones PV, Hogue BG, Hayes MA. Concentration of sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst. 2016;141:1997–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ding J, Woolley C, Hayes MA. Biofluid pretreatment using gradient insulator-based dielectrophoresis: separating cells from biomarkers. Anal Bioanal Chem. 2017;409:6405–14.

    Article  CAS  PubMed  Google Scholar 

  65. Nakano A, Camacho-Alanis F, Ros A. Insulator-based dielectrophoresis with beta-galactosidase in nanostructured devices. Analyst. 2015;140:860–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Polniak DV, Goodrich E, Hill N, Lapizco-Encinas BH. Separating large microscale particles by exploiting charge differences with dielectrophoresis. J Chromatogr A. 2018;1545:84–92.

    Article  CAS  PubMed  Google Scholar 

  67. Rabbani MT, Schmidt CF, Ros A. Single-walled carbon nanotubes probed with insulator-based dielectrophoresis. Anal Chem. 2017;89:13235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saucedo-Espinosa MA, LaLonde A, Gencoglu A, Romero-Creel MF, Dolas JR, Lapizco-Encinas BH. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis. 2016;37:282–90.

    Article  CAS  PubMed  Google Scholar 

  69. Brazey B, Cottet J, Bolopion A, Van Lintel H, Renaud P, Gauthier M. Impedance-based real-time position sensor for lab-on-a-chip devices. Lab Chip. 2018;18:818–31.

    Article  CAS  PubMed  Google Scholar 

  70. Chuang C-H, Huang Y-W. Condensation of fluorescent nanoparticles using a dep chip with a dot-electrode array. Microelectron Eng. 2012;97:317–23.

    Article  CAS  Google Scholar 

  71. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis. 2004;25:1695–704.

    Article  CAS  PubMed  Google Scholar 

  72. Moncada-Hernandez H, Baylon-Cardiel JL, Perez-Gonzalez VH, Lapizco-Encinas BH. Insulator-based dielectrophoresis of microorganisms: theoretical and experimental results. Electrophoresis. 2011;32:2502–11.

    Article  CAS  PubMed  Google Scholar 

  73. Ozuna-Chacon S, Lapizco-Encinas BH, Rito-Palomares M, Martinez-Chapa SO, Reyes-Betanzo C. Performance characterization of an insulator-based dielectrophoretic microdevice. Electrophoresis. 2008;29:3115–22.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Z, Han T, Jeon T-J, Park S, Kim SM. Rapid detection and quantification of bacteria using an integrated micro/nanofluidic device. Sensors Actuators B Chem. 2013;178:683–8.

    Article  CAS  Google Scholar 

  75. Tomizawa Y, Tamiya E, Takamura Y. Trapping probability analysis of a DNA trap using electric and hydrodrag force fields in tapered microchannels. Phys Rev E Stat Nonlinear Soft Matter Phys. 2009;79:051902.

    Article  CAS  Google Scholar 

  76. Pethig R. Dielectrophoresis : theory, methodology and biological applications. 1st ed. Hoboken: Wiley; 2017.

    Book  Google Scholar 

  77. Markx GH, Davey CL. The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzym Microb Technol. 1999;25:161–71.

    Article  CAS  Google Scholar 

  78. Pethig R, Markx GH. Applications of dielectrophoresis in biotechnology. Trends Biotechnol. 1997;15:426–32.

    Article  CAS  PubMed  Google Scholar 

  79. Holzel R. Non-invasive determination of bacterial single cell properties by electrorotation. Biochim Biophys Acta. 1999;1450:53–60.

    Article  CAS  PubMed  Google Scholar 

  80. Olsson J, Glantz P-O. Effect of ph and counter ions on the zeta-potential of oral streptococci. Arch Oral Biol. 1977;22:461–6.

    Article  CAS  PubMed  Google Scholar 

  81. van der Wal A, Minor M, Norde W, Zehnder AJB, Lyklema J. Conductivity and dielectric dispersion of gram-positive bacterial cells. J Colloid Interface Sci. 1997;186:71–9.

    Article  PubMed  Google Scholar 

  82. Wilson WW, Wade MM, Holman SC, Champlin FR. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods. 2001;43:153–64.

    Article  CAS  PubMed  Google Scholar 

  83. Kiers PJM, Bos R, van der Mei HC, Busscher HJ. The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar. Microbiology. 2001;147:757–62.

    Article  CAS  PubMed  Google Scholar 

  84. Schnelle T, Muller T, Fiedler S, Fuhr G. The influence of higher moments on particle behaviour in dielectrophoretic field cages. J Electrost. 1999;46:13–28.

    Article  CAS  Google Scholar 

  85. Liang E, Smith RL, Clague DS. Dielectrophoretic manipulation of finite sized species and the importance of the quadrupolar contribution. Phys Rev E Stat Nonlinear Soft Matter Phys. 2004;70:066617.

    Article  CAS  Google Scholar 

  86. Washizu M, Jones TB, Kaler KVIS. Higher-order dielectrophoretic effects: levitation at a field null. Biochim Biophys Acta. 1993;1158:40–6.

    Article  CAS  PubMed  Google Scholar 

  87. Washizu M. Precise calculation of dielectrophoretic force in arbitrary field. J Electrost. 1992;29:177–88.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Claire Crowther for her assistance in this work.

Funding

This work was supported by the National Institutes of Health grants 1R03AI094193-01, 1R03AI099740-01, 1R03AI111361-01, 1R21AI130855-01, and 1R03AI133397-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hayes.

Ethics declarations

Conflict of interest

Shannon Huey Hilton and Mark A. Hayes declare a conflict of interest with regard to Charlot Biosciences.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilton, S.H., Hayes, M.A. A mathematical model of dielectrophoretic data to connect measurements with cell properties. Anal Bioanal Chem 411, 2223–2237 (2019). https://doi.org/10.1007/s00216-019-01757-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01757-7

Keywords

Navigation