Skip to main content
Log in

Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacteria play a significant role in both human health and disease. An estimated 9.4 million cases of foodborne illness occur in the United States each year. As a result, rapid identification and characterization of microorganisms remains an important research objective. Despite limitations, selective culturing retains a central role among a cadre of identification strategies. For the past decade, separations-based approaches to rapid bacterial identification have been under investigation. Gradient insulator dielectrophoresis (g-iDEP) promises benefits in the form of rapid and specific separation of very similar bacteria, including serotypes of a single species. Furthermore, this approach allows simultaneous concentration of analyte, facilitating detection and downstream analysis. Differentiation of three serotypes or strains of Escherichia coli bacteria is demonstrated within a single g-iDEP microchannel, based on their characteristic electrokinetic properties. Whole cells were captured and concentrated using a range of applied potentials, which generated average electric fields between 160 and 470 V/cm. Bacteria remained viable after exposure to these fields, as determined by cellular motility. These results indicate the potential g-iDEP holds in terms of both separatory power and the possibility for diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DC:

Direct current

DEP:

Dielectrophoresis

EOF:

Electroosmotic flow

EP:

Electrophoresis

g-iDEP:

Gradient-insulator-based dielectrophoresis

iDEP:

Insulator dielectrophoresis

References

  1. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583. doi:10.1073/pnas.95.12.6578

    Article  CAS  Google Scholar 

  2. Hooper LV, Gordon JI (2001) Commensal host–bacterial relationships in the gut. Science 292(5519):1115–1118. doi:10.1126/science.1058709

    Article  CAS  Google Scholar 

  3. Agata EMCD, Gautam S, Green WK, Tang Y-W (2002) High rate of false-negative results of the rectal swab culture method in detection of gastrointestinal colonization with vancomycin-resistant enterococci. Clin Infect Dis 34(2):167–172. doi:10.1086/338234

    Article  Google Scholar 

  4. Benjamin RJ, Wagner SJ (2007) The residual risk of sepsis: modeling the effect of concentration on bacterial detection in two-bottle culture systems and an estimation of false-negative culture rates. Transfusion 47(8):1381–1389. doi:10.1111/j.1537-2995.2007.01326.x

    Article  Google Scholar 

  5. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011) Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis 17(1):16–22

    Article  Google Scholar 

  6. Black JG (1996) Microbiology: principles and applications. Prentice Hall, Upper Saddle River

  7. Tenover FC (2010) Potential impact of rapid diagnostic tests on improving antimicrobial use. In: Bush K (ed) Antimicrobial therapeutics reviews, vol 1213. Annals of the New York Academy of Sciences, New York, pp 70–80. doi:10.1111/j.1749-6632.2010.05827.x

    Google Scholar 

  8. Suehiro J, Noutomi D, Shutou M, Hara M (2003) Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen–antibody reaction. J Electrost 58(3–4):229–246. doi:10.1016/s0304-3886(03)00062-7

    Article  Google Scholar 

  9. Gascoyne PRC, Noshari J, Becker FF, Pethig R (1994) Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells. IEEE Trans Ind Appl 30(4):829–834. doi:10.1109/28.297896

    Article  Google Scholar 

  10. Huang Y, Wang XB, Becker FF, Gascoyne PRC (1996) Membrane changes associated with the temperature-sensitive P85(gag-mos)-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim Biophys Acta Biomembr 1282(1):76–84

    Article  Google Scholar 

  11. Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1994) The removal of human leukemia cells from blood using interdigitated microelectrodes. J Phys D-Appl Phys 27(12):2659–2662. doi:10.1088/0022-3727/27/12/030

    Article  CAS  Google Scholar 

  12. Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast-cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92(3):860–864

    Article  CAS  Google Scholar 

  13. Burt JPH, Pethig R, Gascoyne PRC, Becker FF (1990) Dielectrophoretic characterization of Friend murine erythroleukaemic cells as a measure of induced differentiation. Biochim Biophys Acta 1034(1):93–101

    Article  CAS  Google Scholar 

  14. Wang XB, Huang Y, Gascoyne PRC, Becker FF, Holzel R, Pethig R (1994) Changes in Friend murine erythroleukemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta Biomembr 1193(2):330–344

    Article  CAS  Google Scholar 

  15. Petr J, Maier V (2012) Analysis of microorganisms by capillary electrophoresis. Trac Trends Anal Chem 31:9–22. doi:10.1016/j.trac.2011.07.013

    Article  CAS  Google Scholar 

  16. Armstrong DW, Schulte G, Schneiderheinze JM, Westenberg DJ (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal Chem 71(24):5465–5469. doi:10.1021/ac990779z

    Article  CAS  Google Scholar 

  17. Srivastava SK, Daggolu PR, Burgess SC, Minerick AR (2008) Dielectrophoretic characterization of erythrocytes: positive ABO blood types. Electrophoresis 29(24):5033–5046. doi:10.1002/elps.200800166

    Article  CAS  Google Scholar 

  18. Chou CF, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83(4):2170–2179

    Article  CAS  Google Scholar 

  19. Cummings E, Singh A (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75(18):4724–4731. doi:10.1021/ac0340612

    Article  CAS  Google Scholar 

  20. Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79(12):4552–4557. doi:10.1021/ac070534j

    Article  CAS  Google Scholar 

  21. Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, Chichester

    Book  Google Scholar 

  22. Staton SJR, Jones PV, Ku G, Gilman SD, Kheterpal I, Hayes MA (2012) Manipulation and capture of A beta amyloid fibrils and monomers by DC insulator gradient dielectrophoresis (DC-iGDEP). Analyst 137(14):3227–3229. doi:10.1039/C2an35138b

    Article  CAS  Google Scholar 

  23. Hsiao AP, Barbee KD, Huang X (2010) Microfluidic device for capture and isolation of single cells. Proc Soc Photo Opt Instrum Eng 7759:77590W_1. doi:10.1117/12.861563

  24. Preira P, Grandne V, Forel JM, Gabriele S, Camara M, Theodoly O (2013) Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13(1):161–170. doi:10.1039/c2lc40847c

    Article  CAS  Google Scholar 

  25. Phillips JA, Xu Y, Xia Z, Fan ZH, Tan WH (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81(3):1033–1039. doi:10.1021/ac802092j

    Article  CAS  Google Scholar 

  26. Olitzki L (1932) Electric charge of bacterial antigens. J Immunol 22(4):251–256

    CAS  Google Scholar 

  27. Jones PV, Staton SJR, Hayes MA (2011) Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem 401(7):2103–2111. doi:10.1007/S00216-011-5284-9

    Article  CAS  Google Scholar 

  28. Chen KP, Pacheco JR, Hayes MA, Staton SJR (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30(9):1441–1448. doi:10.1002/elps.200800833

    Article  CAS  Google Scholar 

  29. Hamadi F, Latrache H, Zahir H, Elghmari A, Timinouni M, Ellouali M (2008) The relation between Escherichia coli surface functional groups' composition and their physicochemical properties. Braz J Microbiol 39(1):10–15. doi:10.1590/s1517-83822008000100003

    Article  Google Scholar 

  30. Amory DE, Mozes N, Hermesse MP, Leonard AJ, Rouxhet PG (1988) Chemical analysis of the surface of microorganisms by X-ray photoelectron spectroscopy. Fems Microbiol Lett 49(1):107–110. doi:10.1111/j.1574-6968.1988.tb02690.x

    Article  Google Scholar 

  31. El Ghmari A, Latrache H, Hamadi F, El Louali M, El Bouadili A, Hakkou A, Bourlioux P (2002) Influence of surface cell structures on physicochemical properties of Escherichia coli. Microbiologica 25(2):173–178

    Google Scholar 

  32. Latrache H, Mozes N, Pelletier C, Bourlioux P (1994) Chemical and physicochemical properties of Escherichia coli: variations among three strains and influence of culture conditions. Colloids Surf B: Biointerfaces 2(1–3):47–56. doi:10.1016/0927-7765(94)80017-0

    Article  CAS  Google Scholar 

  33. Lytle DA, Rice EW, Johnson CH, Fox KR (1999) Electrophoretic mobilities of Escherichia coli O157: H7 and wild-type Escherichia coli strains. Appl Environ Microbiol 65(7):3222–3225

    CAS  Google Scholar 

  34. Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications (vol 4, 022811, 2010). Biomicrofluidics 4 (3). doi:10.1063/1.3474458

  35. Castellarnau M, Errachid A, Madrid C, Juarez A, Samitier J (2006) Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys J 91(10):3937–3945. doi:10.1526/biophysj.106.088534

    Article  CAS  Google Scholar 

  36. Weiss NG, Jones PV, Mahanti P, Chen KP, Taylor TJ, Hayes MA (2011) Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis. Electrophoresis 32(17):2292–2297. doi:10.1002/Elps.201100034

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, P.V., DeMichele, A.F., Kemp, L. et al. Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis. Anal Bioanal Chem 406, 183–192 (2014). https://doi.org/10.1007/s00216-013-7437-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7437-5

Keywords

Navigation