Skip to main content

Advertisement

Log in

Substituent effects on the properties related to detonation performance and stability for pentaprismane derivatives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory calculations were used to study energetic and stability properties for a series of pentaprismane (C10H10) derivatives with different substituent groups (NO2, NO, CN, N3, NH2, NHNO2, and ONO2). The results indicated that the N3 and CN groups greatly increase while the ONO2 group decreases the heats of formation. Moreover, the NO2, NHNO2, and ONO2 derivatives possess better detonation properties (detonation velocities = 8.92–9.72 km s−1 and detonation pressures = 38.37–45.24 GPa) than those of other derivatives due to high densities (1.97–2.08 g cm−3) and large heats of detonation (1189.22–1807.45 kJ mol−1). An analysis of the bond dissociation energies (BDE) revealed that all investigated compounds meet the qualification of energetic material (BDE > 84 kJ mol−1) even though the initiation decomposition steps are diverse (breaking of C–C bonds for NO2, N3, NH2, and CN derivatives, N–NO2 bond for NHNO2 derivative, O–NO2 bond for ONO2 derivative, and cage–NO bond for NO derivative). Considering both detonation performance and thermal stability, NO2 and NHNO2 derivatives are proposed to be potential candidates of high energy density materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thottempudi V, Gao H, Shreeve JM (2011) Trinitromethyl-substituted 5-nitro-or 3-azo-1,2,4-triazoles: synthesis, characterization, and energetic properties. J Am Chem Soc 133(16):6464–6471

    Article  CAS  Google Scholar 

  2. Zhang J, Mitchell LA, Parrish DA, Shreeve JM (2015) Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials. J Am Chem Soc 137(33):10532–10535

    Article  CAS  Google Scholar 

  3. Liu Y, Zhang L, Wang G, Wang L, Gong X (2012) High-pressure studies on azido-tetrazole chain–ring conversion in crystalline 2-azido-4,6-dichloro-1,3,5-triazine. Theor Chem Acc 131(8):1–12

    Article  Google Scholar 

  4. Bian C, Zhang M, Li C, Zhou Z (2015) 3-Nitro-1-(2H-tetrazol-5-yl)-1H-1,2,4-triazol-5-amine (HANTT) and its energetic salts: highly thermally stable energetic materials with low sensitivity. J Mater Chem A 3(1):163–169

    Article  CAS  Google Scholar 

  5. Gao H, Shreeve JM (2015) The many faces of FOX-7: a precursor to high-performance energetic materials. Angew Chem Inter Ed 54(21):6335–6338

    Article  CAS  Google Scholar 

  6. Zhang X, Liu Y, Wang F, Gong X (2014) A theoretical study on the structure, intramolecular interactions, and detonation performance of hydrazinium dinitramide. Chem Asian J 9(1):229–236

    Article  Google Scholar 

  7. Sikder A, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112(1):1–15

    Article  CAS  Google Scholar 

  8. Guo Y-Y, Chi W-J, Li Z-S, Li Q-S (2015) Molecular design of N–NO2 substituted cycloalkanes derivatives Cm(N–NO2)m for energetic materials with high detonation performance and low impact sensitivity. RSC Adv 5(48):38048–38055

    Article  CAS  Google Scholar 

  9. Steinhauser G, Klapötke TM (2008) “Green” pyrotechnics: a chemists’ challenge. Angew Chem Inter Ed 47(18):3330–3347

    Article  CAS  Google Scholar 

  10. Yin P, Parrish DA, Shreeve JM (2014) N-diazo-bridged nitroazoles: catenated nitrogen-atom chains compatible with nitro functionalities. Chem Eur J 20(22):6707–6712

    Article  CAS  Google Scholar 

  11. Zhang Y, Huang Y, Parrish DA, Jean’ne MS (2011) 4-Amino-3, 5-dinitropyrazolate salts—highly insensitive energetic materials. J Mater Chem 21(19):6891–6897

    Article  CAS  Google Scholar 

  12. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54(39):11793–11812

    Article  CAS  Google Scholar 

  13. Zhang M-X, Eaton PE, Gilardi R (2000) Hepta-and octanitrocubanes. Angew Chem Inter Ed 39(2):401–404

    Article  CAS  Google Scholar 

  14. Simpson R, Urtiew P, Ornellas D, Moody G, Scribner K, Hoffman D (1997) CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell Explos Pyrot 22(5):249–255

    Article  CAS  Google Scholar 

  15. Dong K, Wang Y, Gong X-B, Zhang J, Sun C-H, Pang S-P (2013) Formyl azido substituted nitro hexaazaisowurtzitane–synthesis, characterization and energetic properties. New J Chem 37(11):3685–3691

    Article  CAS  Google Scholar 

  16. Chen H, Chen S, Li L, Jiao Q, Wei T, Jin S (2010) Synthesis, single crystal structure and characterization of pentanitromonoformylhexaazaisowurtzitane. J Hazard Mater 175(1):569–574

    Article  CAS  Google Scholar 

  17. Hariharan P, Kaufman JJ, Lowrey AH, Miller RS (1985) Ab initioMODPOT/VRDDO/MERGE calculations on energetic compounds. IV. Nitrocubanes: Mononitro to octanitro quantum chemical calculations and electrostatic molecular potential contour maps. Int J Quantum Chem 28(1):39–59

    Article  CAS  Google Scholar 

  18. Wang F, Du H, Zhang J, Gong X (2011) Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material. J Phys Chem A 115(42):11788–11795

    Article  CAS  Google Scholar 

  19. Wu Q, Zhu W, Xiao H (2014) Computer-aided design of two novel and super-high energy cage explosives: dodecanitrohexaprismane and hexanitrohexaazaprismane. RSC Adv 4(8):3789–3797

    Article  CAS  Google Scholar 

  20. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106(9):1770–1783

    Article  CAS  Google Scholar 

  21. Chi W-J, Li L-L, Li B-T, Wu H-S (2012) Density functional calculations for a high energy density compound of formula C6H6−n(NO2)n. J Mol Model 18(8):3695–3704

    Article  CAS  Google Scholar 

  22. Chi W-J, Ze S-L (2015) Theoretical prediction of detonation performance and stability for energetic polydinitroaminoprismanes. RSC Adv 5(10):7766–7772

    Article  CAS  Google Scholar 

  23. Chi W, Wang X, Li B, Wu H (2012) Theoretical investigation on the heats of formation and detonation performance in polydinitroaminocubanes. J Mol Model 18(9):4217–4223

    Article  CAS  Google Scholar 

  24. Chi W-J, Li L-L, Li B-T, Wu H-S (2013) Looking for high energy density compounds among polynitraminecubanes. J Mol Model 19(2):571–580

    Article  CAS  Google Scholar 

  25. Politzer P, Seminario JM (1990) Relative bond strengths in tetrahedrane, prismane, and some of their aza analogs. Struct Chem 1(1):29–32

    Article  CAS  Google Scholar 

  26. Qiu L, Gong X, Ju X, Xiao H (2008) Substituent effect on the molecular stability, group interaction, detonation performance, and thermolysis mechanism of nitroamino-substituted cyclopentanes and cyclohexanes. Sci China Ser B 51(12):1231–1245

    Article  CAS  Google Scholar 

  27. Chung G, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104(23):5647–5650

    Article  CAS  Google Scholar 

  28. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09. D01, Gaussian, Inc. Wallingford

  29. Ju XH, Wang X, Bei FL (2005) Substituent effects on heats of formation, group interactions, and detonation properties of polyazidocubanes. J Comput Chem 26(12):1263–1269

    Article  CAS  Google Scholar 

  30. Ghule V, Jadhav P, Patil R, Radhakrishnan S, Soman T (2009) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114(1):498–503

    Article  Google Scholar 

  31. http://webbook.nist.gov/chemistry NCW

  32. Brill TB, James KJ (1993) Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev 93(8):2667–2692

    Article  CAS  Google Scholar 

  33. Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91(5):923–928

    Article  CAS  Google Scholar 

  34. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16(11):1679–1691

    Article  CAS  Google Scholar 

  35. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48(1):23–35

    Article  CAS  Google Scholar 

  36. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    Article  CAS  Google Scholar 

  37. Blanksby SJ, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36(4):255–263

    Article  CAS  Google Scholar 

  38. Accelrys Software Materials studio (2007) Accelrys Software, Inc, San Diego

  39. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  40. He P, Zhang J-G, Wang K, Yin X, Jin X, Zhang T-L (2015) Extensive theoretical studies on two new members of the FOX-7 family: 5-(dinitromethylene)-1, 4-dinitramino-tetrazole and 1,1′-dinitro-4,4′-diamino-5,5′-bitetrazole as energetic compounds. Phys Chem Chem Phys 17(8):5840–5848

    Article  CAS  Google Scholar 

  41. Liu Y, Gong X, Wang L, Wang G, Xiao H (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2′,4,4′,6,6′-hexanitroazobenzene derivatives. J Phys Chem A 115(9):1754–1762

    Article  CAS  Google Scholar 

  42. Akhavan J (ed) (2004) The chemistry of ExplosiVes, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  43. Richard RM, Ball DW (2009) Density functional calculations on the thermodynamic properties of a series of nitrosocubanes having the formula C8H8−x(NO)x (x = 1–8). J Hazard Mater 164(2):1552–1555

    Article  CAS  Google Scholar 

  44. Zhang Q, Zhang J, Qi X, Shreeve JM (2014) Molecular design and property prediction of high density polynitro [3.3. 3]-propellane-derivatized frameworks as potential high explosives. J Phys Chem A 118(45):10857–10865

    Article  CAS  Google Scholar 

  45. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  46. Elbeih A, Husarova A, Zeman S (2011) Path to ε-HNIW with reduced impact sensitivity. Cent Eur J Energy Mater 8(3):173–182

    CAS  Google Scholar 

  47. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C–NO2 bonds: applications to impact sensitivities. J Mol Struct 376(1):419–424

    Article  CAS  Google Scholar 

  48. Murray JS, Lane P, Politzer P, Bolduc PR (1990) A relationship between impact sensitivity and the electrostatic potentials at the midpoints of C–NO2 bonds in nitroaromatics. Chem Phys Lett 168(2):135–139

    Article  CAS  Google Scholar 

  49. Peter J (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol Phys 93(2):187–194

    Article  Google Scholar 

  50. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17(10):2569–2574

    Article  Google Scholar 

  51. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21(10):262–273

    Article  Google Scholar 

  52. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21(2):25–36

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Major State Basic Research Development Programs of China (2011CBA00701), the National Natural Science Foundation of China (21473010, 20933001). This work is also supported by the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (ZDKT12-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan-Song Li or Ze-Sheng Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, WJ., Guo, YY., Li, QS. et al. Substituent effects on the properties related to detonation performance and stability for pentaprismane derivatives. Theor Chem Acc 135, 145 (2016). https://doi.org/10.1007/s00214-016-1885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1885-x

Keywords

Navigation