Skip to main content
Log in

Impact sensitivity and the maximum heat of detonation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We demonstrate that a large heat of detonation is undesirable from the standpoint of the impact sensitivity of an explosive and also unnecessary from the standpoints of its detonation velocity and detonation pressure. High values of the latter properties can be achieved even with a moderate heat of detonation, and this in turn enhances the likelihood of relatively low sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dlott DD (2003) In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion. Elsevier, Amsterdam, pp 125–191

  2. Akhavan J (2004) The chemistry of explosives, 2nd edn. Royal Society of Chemistry, Cambridge

  3. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  4. Shackelford SA (2008) Cent Eur J Energ Mater 5(1):75–101

    CAS  Google Scholar 

  5. Klapötke TM (2012) Chemistry of high energy materials, 2nd edn. de Gruyter, Berlin

  6. Hornberg H, Volk F (1989) Propell Explos Pyrotech 14:199–211

    Article  CAS  Google Scholar 

  7. Licht H-H (2000) Propell Explos Pyrotech 25:126–132

    Article  CAS  Google Scholar 

  8. Danel J-F, Kazandjian L (2004) Propell Explos Pyrotech 29:314–316

    Article  CAS  Google Scholar 

  9. Meyer R, Köhler J, Homburg A (2007) Explosives, 6th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Mader CL (1998) Numerical modeling of explosives and propellants, 2nd edn. CRC, Boca Raton

  11. Sučeska M (2004) Mater Sci Forum 465–466:325–330

    Article  Google Scholar 

  12. Bastea S, Fried LE, Glaesemann KR, Howard WM, Sovers PC, Vitello PA (2006) CHEETAH 5.0, user’s manual, Lawrence Livermore National Laboratory, Livermore

  13. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  14. Kamlet MJ, Dickinson C (1968) J Chem Phys 48:43–50

    Article  CAS  Google Scholar 

  15. Kamlet MJ, Hurwitz H (1968) J Chem Phys 48:3685–3692

    Article  CAS  Google Scholar 

  16. Urbánski T (1984) Chemistry and technology of explosives, vol 4. Pergamon, Oxford

  17. Politzer P, Murray JS (2011) Cent Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  18. Shekhar H (2012) Cent Eur J Energ Mater 9:39–48

    CAS  Google Scholar 

  19. Kamlet MJ, Ablard JE (1968) J Chem Phys 48:36–42

    Article  CAS  Google Scholar 

  20. Rice BM, Hare J (2002) Thermochim Acta 384:377–391

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS (2014) Cent Eur J Energ Mater 11:459–474

    Google Scholar 

  22. Muthurajan H, How Ghee A (2008) Cent Eur J Energ Mater 5(3–4):19–35

    CAS  Google Scholar 

  23. Ornellas DL (1968) J Phys Chem 72:2390–2394

    Article  CAS  Google Scholar 

  24. Pepekin VI, Gubin SA (2007) Combust Explos Shock Waves 43:212–218

    Article  Google Scholar 

  25. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials. Kluwer, Dordrecht, pp 605–639

  26. Byrd EFC, Rice BM (2006) J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  27. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propell Explos Pyrotech 22:249–255

    Article  CAS  Google Scholar 

  28. Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg, MD, http://www.nist.gov

  29. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  30. Watt DS, Cliff MD (1998) TNAZ based melt-cast explosives: technology review and AMRI. Research directions, DSTO-TR-0702, Defense Science and Technology Organization, Melbourne, p 13, Sect 4.1

  31. Politzer P, Murray JS (2015) J Mol Model 21(25):1–10

    CAS  Google Scholar 

  32. Gilardi RD, Butcher RJ (2001) Acta Cryst E 57:657–658

    Article  Google Scholar 

  33. Gökçìnar E, Klapötke TM, Bellamy AJ (2010) J Mol Struct (Theochem) 953:18–23

    Article  Google Scholar 

  34. Rice BM, Byrd EFC (2013) J Comput Chem 34:2146–2151

    Article  CAS  Google Scholar 

  35. Li J-R, Zhao J-M, Dong H-S (2005) J Chem Cryst 35:943–948

    Article  CAS  Google Scholar 

  36. Wilson WS, Bliss DE, Christian SI, Knight DJ (1990) Explosive properties of polynitroaromatics, NWC TP 7073. Naval Weapons Center, China Lake

  37. Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920–2924

    Article  CAS  Google Scholar 

  38. Licht H-H, Ritter H (1994) J Energ Mater 12:223–235

    Article  CAS  Google Scholar 

  39. Chavez DE, Hiskey MA, Gilardi RD (2000) Angew Chem Int Ed 39:1791–1793

    Article  CAS  Google Scholar 

  40. Chavez DE, Hiskey MA, Naud DL (2004) Propell Explos Pyrotech 29:209–215

    Article  CAS  Google Scholar 

  41. Huynh M-HV, Hiskey MA, Hartline EL, Montoya DP, Gilardi R (2004) Angew Chem Int Ed 43:4924–4928

    Article  CAS  Google Scholar 

  42. Klapötke TM (ed) (2007) High energy density materials. Springer, Berlin

  43. Wei T, Zhu W, Zhang X, Li Y-F, Xiao H (2009) J Phys Chem A 113:9404–9412

    Article  CAS  Google Scholar 

  44. Lai W-P, Lian P, Yu T, Chang H-B, Xue Y-Q (2011) Comput Theor Chem 963:221–226

    Article  CAS  Google Scholar 

  45. Luo Y-R (2003) Handbook of bond dissociation energies in organic compounds. CRC, Boca Raton

  46. Pepekin VI, Gubin SA (2007) Combust Explos Shock Waves 43:84–95

    Article  Google Scholar 

  47. Pepekin VI, Korsunskii BL, Denisaev AA (2008) Combust Explos Shock Waves 44:586–590

    Article  Google Scholar 

  48. Politzer P, Murray JS (2014) Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  49. Politzer P, Murray JS (2003) In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion. Elsevier, Amsterdam, pp 5–23

  50. Zeman S (2007) Struct Bond 125:195–271

    Article  CAS  Google Scholar 

  51. Politzer P, Murray JS (2014) In: Brinck T (ed) Green energetic materials. Wiley, Chichester, pp 45–62

  52. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  53. Politzer P, Murray JS (2014) J Mol Model 20(2223):1–8

    Google Scholar 

  54. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  55. Doherty RM, Watt DS (2008) Propell Explos Pyrotech 33:4–13

    Article  CAS  Google Scholar 

  56. Kamlet MJ (1976) Proceedings of the Sixth Symposium (International) on Detonation, Report No ACR 221. Office of Naval Research, Arlington, pp 312–322

    Google Scholar 

  57. Kamlet MJ, Adolph HG (1979) Propell Explos 4:30–34

    Article  CAS  Google Scholar 

  58. Armstrong RW, Coffey CS, DeVost VF, Elban WL (1990) J Appl Phys 68:979–984

    Article  CAS  Google Scholar 

  59. Armstrong RW, Elban WL (2006) Mater Sci Tech 22:381–395

    Article  CAS  Google Scholar 

  60. Wang Y, Jiang W, Song X, Deng G, Li F (2013) Cent Eur J Energ Mater 10:277–287

    CAS  Google Scholar 

  61. Kamlet MJ, Adolph HG (1981) Proceedings of the Seventh Symposium (International) on Detonation, Report No NSWCMP-82-334. Naval Surface Warfare Center, Silver Springs, pp 60–67

    Google Scholar 

  62. Politzer P, Lane P, Murray JS (2013) Cent Eur J Energ Mater 10:305–323

    CAS  Google Scholar 

  63. Kiselev VG, Gritsan NP, Zarko VE, Kalmykov PI, Shandakov VA (2007) Combust Explos Shock Waves 43:562–566, references cited

    Article  Google Scholar 

  64. Teselkin VA (2009) Combust Explos Shock Waves 45:632–633

    Article  Google Scholar 

  65. Lai W-P, Lian P, Yu T, Bu J-H, Liu Y-Z, Zhu W-L, Lv J, Ge Z-X (2014) J Mol Model 20(2343):1–10, references cited

  66. Politzer P, Lane P, Murray JS (2013) Struct Chem 24:1965–1974

    Article  CAS  Google Scholar 

  67. Stine JR (1993) Mater Res Soc Symp Proc 296:3–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the support of this work by the Office of Naval Research, contract number N00014-12-1-0535, Program Officer Dr. Clifford D. Bedford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. Impact sensitivity and the maximum heat of detonation. J Mol Model 21, 262 (2015). https://doi.org/10.1007/s00894-015-2793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2793-z

Keywords

Navigation