Skip to main content
Log in

Computer-aided design and property prediction of novel insensitive high-energy heterocycle-substituted derivatives of cage NNNAHP

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of new derivatives of cage 2,4,6,8,10,12,13,14,15-nanonitro-2,4,6,8,10,12,13,14, 15-nanoazaheptacyclo[5.5.1.13,11,15,9] pentadecane (NNNAHP) were designed by incorporating combination of heterocyclic and non-heterocyclic substituents and studied by using density functional theory. The results indicate that the –tetrazine and –N(NO2)2 are very beneficial structural fragments to increase their heat of formation. The introduction of different heterocyclic and non-heterocyclic groups can produce different effects on different properties: large densities (1.88–2.06 g cm−3), high detonation velocities (8.17–9.83 km s−1), excellent detonation pressures (30.55–46.02GPa), and outstanding heat of detonations (1169.80–1637.19 cal g−1). The analysis of bond dissociation energy values show that the N(cage)-NO2 is the weakest bond, and it may turn into a trigger bond during detonation. Almost all the derivatives are thermally more stable than the parent compound. All the substituted derivatives are insensitive as compared with the parent compound. According to excellent detonation properties, high thermal stability, and good insensitivity, 10 compounds may be chosen as potential high-energy density compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spear RJ, Wilson WS (1984) Recent approaches to the synthesis of high explosive and energetic materials: a review. J Energ Mater 2(1–2):61–149

    CAS  Google Scholar 

  2. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Annu Rev Mater Res 31(1):291–321

    CAS  Google Scholar 

  3. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384(1–2):187–204

    CAS  Google Scholar 

  4. Thottempudi V, Shreeve JM (2011) Synthesis and promising properties of a new family of high-density energetic salts of 5-nitro-3-trinitromethyl-1 H-1, 2, 4-triazole and 5, 5′-Bis (trinitromethyl)-3, 3′-azo-1 H-1, 2, 4-triazole. J Am Chem Soc 133(49):19982–19992

    CAS  PubMed  Google Scholar 

  5. Sabatini JJ, Oyler KD (2016) Recent advances in the synthesis of high explosive materials. Crystals 6(1):5

    Google Scholar 

  6. Klapötke TM, Krumm B, Ilg R, Troegel D, Tacke R (2007) The sila-explosives Si (CH2N3) 4 and Si (CH2ONO2) 4: silicon analogues of the common explosives pentaerythrityl tetraazide, C (CH2N3) 4, and pentaerythritol tetranitrate, C (CH2ONO2) 4. J Am Chem Soc 129(21):6908–6915

    PubMed  Google Scholar 

  7. Pan Y, Zhu W (2018) Designing and looking for novel cage compounds based on bicyclo-HMX as high energy density compounds. RSC Adv 8(1):44–52

    CAS  Google Scholar 

  8. Xu X-J, Xiao H-M, Ju X-H, Gong X-D, Zhu W-H (2006) Computational studies on polynitrohexaazaadmantanes as potential high energy density materials. J Phys Chem A 110(17):5929–5933

    CAS  PubMed  Google Scholar 

  9. Richard RM, Ball DW (2008) Enthalpies of formation of nitrobuckminsterfullerenes: extrapolation to C60 (NO2) 60. J Mol Struct Theochem 858(1–3):85–87

    CAS  Google Scholar 

  10. Ghule V, Jadhav P, Patil R, Radhakrishnan S, Soman T (2009) Quantum-chemical studies on hexaazaisowurtzitanes. J Phys Chem A 114(1):498–503

    Google Scholar 

  11. Jiao Y, Liu Z, Zhu W (2018) Searching for a new family of modified CL-20 cage derivatives with high energy and low sensitivity. Struct Chem 29(3):837–845

    CAS  Google Scholar 

  12. Zhang J-y, Du H-c, Wang F, Gong X-d, Ying S-j (2012) Crystal structure, detonation performance, and thermal stability of a new polynitro cage compound: 2, 4, 6, 8, 10, 12, 13, 14, 15-nonanitro-2, 4, 6, 8, 10, 12, 13, 14, 15-nonaazaheptacyclo [5.5. 1.1 3, 11. 1 5, 9] pentadecane. J Mol Model 18(6):2369–2376

    CAS  PubMed  Google Scholar 

  13. Lai W-P, Lian P, Yu T, Bu J-H, Liu Y-Z, Zhu W-L, Lv J, Zhong-Xue G (2014) Theoretical study on the structure and stability of [1, 2, 5] oxadiazolo [3, 4-e][1, 2, 3, 4]-tetrazine-4, 6-di-N-dioxide (FTDO). J Mol Model 20(7):2343

    PubMed  Google Scholar 

  14. Wu Q, Zhu W, Xiao H (2014) Designing and screening novel explosives with high energy and low sensitivity by appropriately introducing N-oxides, amino groups, and nitro groups into s-heptazine. RSC Adv 4(95):53000–53009

    CAS  Google Scholar 

  15. Yang J, Yan H, Wang G, Zhang X, Wang T, Gong X (2014) Computational investigations into the substituent effects of–N 3,–NF 2,–NO 2, and–NH 2 on the structure, sensitivity and detonation properties of N, N′-azobis (1, 2, 4-triazole). J Mol Model 20(4):2148

    PubMed  Google Scholar 

  16. Zhang J, Shreeve JM (2014) 3, 3′-dinitroamino-4, 4′-azoxyfurazan and its derivatives: an assembly of diverse N–O building blocks for high-performance energetic materials. J Am Chem Soc 136(11):4437–4445

    CAS  PubMed  Google Scholar 

  17. Deswal S, Ghule VD, Kumar TR, Radhakrishnan S (2015) Quantum-chemical design of tetrazolo [1, 5-b][1, 2, 4, 5] tetrazine based nitrogen-rich energetic materials. Computat Theoret Chem 1054:55–62

    CAS  Google Scholar 

  18. He C, Shreeve JM (2015) Energetic materials with promising properties: synthesis and characterization of 4, 4′-Bis (5-nitro-1, 2, 3-2H-triazole) derivatives. Angew Chem Int Ed 54(21):6260–6264

    CAS  Google Scholar 

  19. He P, Zhang J-G, Wang K, Yin X, Zhang T-L (2015) Combination multinitrogen with good oxygen balance: molecule and synthesis design of polynitro-substituted tetrazolotriazine-based energetic compounds. J Org Chem 80(11):5643–5651

  20. Huang H, Shi Y, Liu Y, Yang J (2016) High-oxygen-balance furazan anions: a good choice for high-performance energetic salts. Chemistry 11(11):1688–1696

    CAS  Google Scholar 

  21. Klapötke TM, Leroux M, Schmid PC, Stierstorfer J (2016) Energetic materials based on 5, 5′-diamino-4, 4′-dinitramino-3, 3′-bi-1, 2, 4-triazole. Chemistry 11(6):844–851

    Google Scholar 

  22. Khan RU, Zhu S, Zhu W (2019) DFT studies on nitrogen-rich pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine-based high-energy density compounds. J Mol Model 25(9):283. https://doi.org/10.1007/s00894-019-4167-4

    Article  CAS  PubMed  Google Scholar 

  23. Ullah Khan R, Zhu W (2019) Theoretical studies on energetic nitrogen-rich heterocyclic substituted derivatives of pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine-1, 3-di-N-oxide. ChemistrySelect 4(46):13646–13655. https://doi.org/10.1002/slct.201903605

    Article  CAS  Google Scholar 

  24. Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24(1):1–30

    CAS  Google Scholar 

  25. Xue H, Gao Y, Twamley B, Shreeve JM (2005) New energetic salts based on nitrogen-containing heterocycles. Chem Mater 17(1):191–198

    CAS  Google Scholar 

  26. Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3 N-oxide. J Mater Chem A 2(32):13006–13015

    CAS  Google Scholar 

  27. Khan RU, Zhu W (2020) Designing and looking for novel low-sensitivity and high-energy cage derivatives based on the skeleton of nonanitro nonaaza pentadecane framework. Struct Chem. https://doi.org/10.1007/s11224-020-01506-y

  28. Liang L, Huang H, Wang K, Bian C, Song J, Ling L, Zhao F, Zhou Z (2012) Oxy-bridged bis (1H-tetrazol-5-yl) furazan and its energetic salts paired with nitrogen-rich cations: highly thermally stable energetic materials with low sensitivity. J Mater Chem 22(41):21954–21964

    CAS  Google Scholar 

  29. Pan Y, Zhu W, Xiao H (2018) Molecular design on a new family of azaoxaadamantane cage compounds as potential high-energy density compounds. Can J Chem 97(2):86–93

    Google Scholar 

  30. Chen Z, Xiao J, Xiao H, Chiu Y (1999) Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. J Phys Chem A 103(40):8062–8066

    CAS  Google Scholar 

  31. Chen P, Chieh Y, Tzeng S (2003) Density functional calculations of the heats of formation for various aromatic nitro compounds. J Mol Struct Theochem 634(1–3):215–224

    CAS  Google Scholar 

  32. Wang F, Xu X, Xiao H, Zhang J (2003) Theoretical studies on heat of formation and stability for polynitroadamantanes. Acta Chimica Sin-Chinese Edition 61(12):1939–1943

    CAS  Google Scholar 

  33. Ju X-H, Li Y-M, Xiao H-M (2005) Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes. J Phys Chem A 109(5):934–938

    CAS  PubMed  Google Scholar 

  34. Wei T, Zhu W, Zhang X, Li Y-F, Xiao H (2009) Molecular design of 1, 2, 4, 5-tetrazine-based high-energy density materials. J Phys Chem A 113(33):9404–9412

    CAS  PubMed  Google Scholar 

  35. Zhang X, Zhu W, Xiao H (2009) Comparative theoretical studies of energetic substituted carbon-and nitrogen-bridged difurazans. J Phys Chem A 114(1):603–612

    Google Scholar 

  36. Khan RU, Zhu W (2019) Computational study of energetic derivatives of 3,3′-bridged ditriazoles. Can J Chem 98(3):115–127. https://doi.org/10.1139/cjc-2019-0399

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E (1997) Calculation of heats of sublimation and solid phase heats of formation. Mol Phys 91(5):923–928

    CAS  Google Scholar 

  38. Byrd EF, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110(3):1005–1013

    CAS  PubMed  Google Scholar 

  39. Kamlet MJ, Jacobs S (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48(1):23–35

    CAS  Google Scholar 

  40. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107(19):2095–2101

    CAS  Google Scholar 

  41. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16(5):895–901

    PubMed  Google Scholar 

  42. Guo Y-Y, Chi W-J, Li Z-S, Li Q-S (2015) Molecular design of N–NO 2 substituted cycloalkanes derivatives C m (N–NO 2) m for energetic materials with high detonation performance and low impact sensitivity. RSC Adv 5(48):38048–38055

    CAS  Google Scholar 

  43. Tian M, Chi W-J, Li Q-S, Li Z-S (2016) Theoretical design of highly energetic poly-nitro cage compounds. RSC Adv 6(53):47607–47615

    CAS  Google Scholar 

  44. Jin X, Hu B, Lu W, Gao S, Liu Z, Lv C (2014) Theoretical study on a novel high-energy density material 4, 6, 10, 12-tetranitro-5, 11-bis (nitroimino)-2, 8-dioxa-4, 6, 10, 12-tetraaza-tricyclo [7, 3, 0, 0 3, 7] dodecane. RSC Adv 4(13):6471–6477

    CAS  Google Scholar 

  45. Jin X, Xiao M, Ding Y, Zhou J, Hu B (2018) Theoretical insights on a series of cyclic energetic derivatives. ChemistrySelect 3(40):11160–11166

    CAS  Google Scholar 

  46. Jin X, Zhou J, Hu B, Ma C (2017) Theoretical insights on a series of difluoramino group–based energetic molecules. J Phys Org Chem 30(12):e3704

    Google Scholar 

  47. Jin X, Zhou J, Wang S, Hu B (2016) Computational study on structure and properties of new energetic material 3, 7-bis (dinitromethylene)-2, 4, 6, 8-tetranitro-2, 4, 6, 8-tetraaza-bicyclo [3.3. 0] octane. Química Nova 39(4):467–473

    CAS  Google Scholar 

  48. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree− Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100(41):16502–16513

    CAS  Google Scholar 

  49. Lide D (2004) The 84th Edition of the CRC handbook of chemistry and physics. CRC Press Boca Raton, FL

    Google Scholar 

  50. Neutz J, Grosshardt O, Schäufele S, Schuppler H, Schweikert W (2003) Synthesis, characterization and thermal behaviour of guanidinium-5-aminotetrazolate (GA)–a new nitrogen-rich compound. Propellants, Explosives, Pyrotechnics 28(4):181–188

    CAS  Google Scholar 

  51. Ciezak JA, Trevino S (2005) The inelastic neutron scattering spectra of α-3-amino-5-nitro-1, 2, 4-2H-triazole: experiment and DFT calculations. Chem Phys Lett 403(4–6):329–333

    CAS  Google Scholar 

  52. Wei T, Zhu W, Zhang J, Xiao H (2010) DFT study on energetic tetrazolo-[1, 5-b]-1, 2, 4, 5-tetrazine and 1, 2, 4-triazolo-[4, 3-b]-1, 2, 4, 5-tetrazine derivatives. J Hazard Mater 179(1–3):581–590

    CAS  PubMed  Google Scholar 

  53. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2–3):589–607

    CAS  PubMed  Google Scholar 

  54. Pan Y, Li J, Cheng B, Zhu W, Xiao H (2012) Computational studies on the heats of formation, energetic properties, and thermal stability of energetic nitrogen-rich furazano [3, 4-b] pyrazine-based derivatives. Computat Theoret Chem 992:110–119

    CAS  Google Scholar 

  55. Qiu L, Xiao H, Gong X, Ju X, Zhu W (2006) Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J Phys Chem A 110(10):3797–3807

    CAS  PubMed  Google Scholar 

  56. Zhang J-y, Du H-c, Wang F, Gong X-d, Huang Y-s (2011) DFT studies on a high energy density cage compound 4-trinitroethyl-2, 6, 8, 10, 12-pentanitrohezaazaisowurtzitane. J Phys Chem A 115(24):6617–6621

    CAS  PubMed  Google Scholar 

  57. Zhang J-y, Du H-c, Wang F, Gong X-d, Huang Y-s (2012) Theoretical investigations of a high density cage compound 10-(1-nitro-1, 2, 3, 4-tetraazol-5-yl) methyl-2, 4, 6, 8, 12-hexanitrohexaazaisowurtzitane. J Mol Model 18(1):165–170

    CAS  PubMed  Google Scholar 

  58. Oliveira MA, Borges Jr I (2019) On the molecular origin of the sensitivity to impact of cyclic nitramines. Int J Quantum Chem 119(8):e25868

    Google Scholar 

  59. Anders G, Borges Jr I (2011) Topological analysis of the molecular charge density and impact sensitivy models of energetic molecules. J Phys Chem A 115(32):9055–9068

    CAS  PubMed  Google Scholar 

  60. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20(5):2223

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21773119) and Science Challenging Program (No. TZ2016001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.U., Zhu, W. Computer-aided design and property prediction of novel insensitive high-energy heterocycle-substituted derivatives of cage NNNAHP. J Mol Model 26, 239 (2020). https://doi.org/10.1007/s00894-020-04513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04513-2

Keywords

Navigation