Skip to main content

Advertisement

Log in

Mitochondria: key players in the neurotoxic effects of amphetamines

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Amphetamines are a class of psychotropic drugs with high abuse potential, as a result of their stimulant, euphoric, emphathogenic, entactogenic, and hallucinogenic properties. Although most amphetamines are synthetic drugs, of which methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine (“ecstasy”) represent well-recognized examples, the use of natural related compounds, namely cathinone and ephedrine, has been part of the history of humankind for thousands of years. Resulting from their amphiphilic nature, these drugs can easily cross the blood–brain barrier and elicit their well-known psychotropic effects. In the field of amphetamines’ research, there is a general consensus that mitochondrial-dependent pathways can provide a major understanding concerning pathological processes underlying the neurotoxicity of these drugs. These events include alterations on tricarboxylic acid cycle’s enzymes functioning, inhibition of mitochondrial electron transport chain’s complexes, perturbations of mitochondrial clearance mechanisms, interference with mitochondrial dynamics, as well as oxidative modifications in mitochondrial macromolecules. Additionally, other studies indicate that amphetamines-induced neuronal toxicity is closely regulated by B cell lymphoma 2 superfamily of proteins with consequent activation of caspase-mediated downstream cell death pathway. Understanding the molecular mechanisms at mitochondrial level involved in amphetamines’ neurotoxicity can help in defining target pathways or molecules mediating these effects, as well as in developing putative therapeutic approaches to prevent or treat the acute- or long-lasting neuropsychiatric complications seen in human abusers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acin-Perez R, Salazar E, Brosel S, Yang H, Schon EA, Manfredi G (2009) Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol Med 1:392–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  CAS  PubMed  Google Scholar 

  • Ádori C, Lőw P, Andó RD et al (2011) Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology 213:377–391

    Article  PubMed  CAS  Google Scholar 

  • Ajjimaporn A, Swinscoe J, Shavali S, Govitrapong P, Ebadi M (2005) Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells. Brain Res Bull 67:466–475

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K (2006) Longitudinal clinical course following pharmacological treatment of methamphetamine psychosis which persists after long-term abstinence. Ann N Y Acad Sci 1074:125–134

    Article  CAS  PubMed  Google Scholar 

  • Albers DS, Zeevalk GD, Sonsalla PK (1996) Damage to dopaminergic nerve terminals in mice by combined treatment of intrastriatal malonate with systemic methamphetamine or MPTP. Brain Res 718:217–220

    Article  CAS  PubMed  Google Scholar 

  • Alves E, Summavielle T, Alves CJ et al (2007) Monoamine oxidase-B mediates ecstasy-induced neurotoxic effects to adolescent rat brain mitochondria. J Neurosci 27:10203–10210

    Article  CAS  PubMed  Google Scholar 

  • Alves E, Binienda Z, Carvalho F et al (2009a) Acetyl-l-carnitine provides effective in vivo neuroprotection over 3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158:514–523

    Article  CAS  PubMed  Google Scholar 

  • Alves E, Summavielle T, Alves CJ et al (2009b) Ecstasy-induced oxidative stress to adolescent rat brain mitochondria in vivo: influence of monoamine oxidase type A. Addict Biol 14:185–193

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Se KK, Kinemuchi H et al (1990) Selective inhibition of MAO-A in serotonergic synaptosomes by two amphetamine metabolites, p-hydroxyamphetamine and p-hydroxynorephedrine. Neurochem Int 17:587–592

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ask AL, Fagervall I, Florvall L, Ross SB, Ytterborn S (1985) Inhibition of monoamine oxidase in 5-hydroxytryptaminergic neurones by substituted p-aminophenylalkylamines. Br J Pharmacol 85:683–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axt KJ, Molliver ME (1991) Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Synapse 9:302–313

    Article  CAS  PubMed  Google Scholar 

  • Bachmann RF, Wang Y, Yuan P et al (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12:805–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker MJ, Tatsuta T, Langer T (2011) Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol 3(7)

  • Barbosa DJ, Capela JP, Oliveira JMA et al (2012) Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes. Br J Pharmacol 165:1017–1033

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbosa DJ, Capela JP, Silva R et al (2014a) “Ecstasy”-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites. Arch Toxicol 88:515–531

    Article  CAS  PubMed  Google Scholar 

  • Barbosa DJ, Capela JP, Silva R et al (2014b) The mixture of “ecstasy” and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations. Arch Toxicol 88:455–473

    Article  CAS  PubMed  Google Scholar 

  • Barbosa DJ, Serrat R, Mirra S et al (2014c) MDMA impairs mitochondrial neuronal trafficking in a Tau- and Mitofusin2/Drp1-dependent manner. Arch Toxicol 88:1561–1572

    Article  CAS  PubMed  Google Scholar 

  • Barbosa DJ, Serrat R, Ferreira LM et al (2014d) Neuronal mitochondrial trafficking impairment: the cause or a consequence of neuronal dysfunction caused by amphetamine-like drugs. J Drug Alcohol Res 3:235868

  • Barbosa DJ, Serrat R, Mirra S et al (2014e) The mixture of “ecstasy” and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations. Toxicol Sci 139:407–420

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Xie T, Piao Y et al (2001) A murine dopamine neuron-specific cDNA library and microarray: increased COXI expression during methamphetamine neurotoxicity. Neurobiol Dis 8:822–833

    Article  CAS  PubMed  Google Scholar 

  • Barsoum MJ, Yuan H, Gerencser AA et al (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beauvais G, Atwell K, Jayanthi S, Ladenheim B, Cadet JL (2011) Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS ONE 6:e28946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beeson CC, Beeson GC, Schnellmann RG (2010) A high-throughput respirometric assay for mitochondrial biogenesis and toxicity. Anal Biochem 404:75–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berntman L, Carlsson C, Hägerdal M, Siesjö BK (1978) Circulatory and metabolic effects in the brain induced by amphetamine sulphate. Acta Physiol Scand 102:310–323

    Article  CAS  PubMed  Google Scholar 

  • Bratton SB, Salvesen GS (2010) Regulation of the Apaf-1–caspase-9 apoptosome. J Cell Sci 123:3209–3214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bratton SB, Walker G, Srinivasula SM et al (2001) Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J 20:998–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99:45–53

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 95:429–436

    Article  CAS  PubMed  Google Scholar 

  • Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Büeler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    Article  PubMed  CAS  Google Scholar 

  • Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11–18

    Article  CAS  PubMed  Google Scholar 

  • Busceti CL, Biagioni F, Riozzi B et al (2008) Enhanced tau phosphorylation in the hippocampus of mice treated with 3,4-methylenedioxymethamphetamine (“ecstasy”). J Neurosci 28:3234–3245

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Ordonez SV, Ordonez JV (1997) Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 25:176–184

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, McCoy MT, Vawter M, Ladenheim B (2001) Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array. Synapse 41:40–48

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Yang J, Jones DP (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1366:139–149

    Article  CAS  PubMed  Google Scholar 

  • Callahan BT, Cord BJ, Ricaurte GA (2001) Long-term impairment of anterograde axonal transport along fiber projections originating in the rostral raphe nuclei after treatment with fenfluramine or methylenedioxymethamphetamine. Synapse 40:113–121

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Fernandes E, Remiao F, Bastos ML, Meisel A, Carvalho F (2007a) Ecstasy induces apoptosis via 5-HT2A-receptor stimulation in cortical neurons. Neurotoxicology 28:868–875

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Macedo C, Branco PS et al (2007b) Neurotoxicity mechanisms of thioether ecstasy metabolites. Neuroscience 146:1743–1757

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, da Costa Araújo S, Costa VM et al (2013) The neurotoxicity of hallucinogenic amphetamines in primary cultures of hippocampal neurons. Neurotoxicology 34:254–263

    Article  CAS  PubMed  Google Scholar 

  • Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are required for amyloid b-mediated neurotoxicity. FASEB J 15:1439–1441

    CAS  PubMed  Google Scholar 

  • Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E, Cappelletti G (2010) Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+-induced neurodegeneration. J Neurochem 115:247–258

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Remiao F, Milhazes N et al (2004) The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology 200:193–203

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Carmo H, Costa VM et al (2012) Toxicity of amphetamines: an update. Arch Toxicol 86:1167–1231

    Article  CAS  PubMed  Google Scholar 

  • Castino R, Lazzeri G, Lenzi P et al (2008) Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 106:1426–1439

    Article  CAS  PubMed  Google Scholar 

  • Castro-Caldas M, Carvalho AN, Rodrigues E et al (2012) Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Mol Neurobiol 46:475–486

    Article  CAS  PubMed  Google Scholar 

  • Cereghetti GM, Stangherlin A, de Brito OM et al (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA 105:15803–15808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cerretani D, Bello S, Cantatore S et al (2011) Acute administration of 3,4-methylenedioxymethamphetamine (MDMA) induces oxidative stress, lipoperoxidation and TNFα-mediated apoptosis in rat liver. Pharmacol Res 64:517–527

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    Article  CAS  PubMed  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Chan P, Di Monte DA, Luo JJ, DeLanney LE, Irwin I, Langston JW (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 62:2484–2487

    Article  CAS  PubMed  Google Scholar 

  • Chang DTW, Honick AS, Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26:7035–7045

    Article  CAS  PubMed  Google Scholar 

  • Chang KT, Niescier RF, Min KT (2011) Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc Natl Acad Sci USA 108:15456–15461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, McCaffery JM, Chan DC (2007a) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130:548–562

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Owens GC, Crossin KL, Edelman DB (2007b) Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol Cell Neurosci 36:472–483

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Owens GC, Edelman DB (2008) Dopamine inhibits mitochondrial motility in hippocampal neurons. PLoS ONE 3:e2804

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen S, Owens GC, Makarenkova H, Edelman DB (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS ONE 5:e10848

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chipana C, Camarasa J, Pubill D, Escubedo E (2006) Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors. Neuropharmacology 51:885–895

    Article  CAS  PubMed  Google Scholar 

  • Chipana C, Camarasa J, Pubill D, Escubedo E (2008) Memantine prevents MDMA-induced neurotoxicity. Neurotoxicology 29:179–183

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chu T, Kumagai Y, DiStefano EW, Cho AK (1996) Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion. Biochem Pharmacol 51:789–796

    Article  CAS  PubMed  Google Scholar 

  • Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101:15927–15932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cipolat S, Rudka T, Hartmann D et al (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–175

    Article  CAS  PubMed  Google Scholar 

  • Colado MI, O’Shea E, Granados R, Murray TK, Green AR (1997) In vivo evidence for free radical involvement in the degeneration of rat brain 5-HT following administration of MDMA (“ecstasy”) and p-chloroamphetamine but not the degeneration following fenfluramine. Br J Pharmacol 121:889–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Colado MI, O’Shea E, Esteban B, Granados R, Green AR (1999) In vivo evidence against clomethiazole being neuroprotective against MDMA (‘ecstasy’)-induced degeneration of rat brain 5-HT nerve terminals by a free radical scavenging mechanism. Neuropharmacology 38:307–314

    Article  CAS  PubMed  Google Scholar 

  • Cruz CM, Rinna A, Forman HJ, Ventura ALM, Persechini PM, Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282:2871–2879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cunha-Oliveira T, Rego AC, Cardoso SM et al (2006) Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Res 1089:44–54

    Article  CAS  PubMed  Google Scholar 

  • Cuyas E, Robledo P, Pizarro N et al (2013) 3,4-Methylenedioxymethamphetamine induces gene expression changes in rats related to serotonergic and dopaminergic systems, but not to neurotoxicity. Neurotox Res 25:161–169

  • Darvesh AS, Gudelsky GA (2005) Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT. Brain Res 1056:168–175

    Article  CAS  PubMed  Google Scholar 

  • Delettre C, Yuste VJ, Moubarak RS et al (2006) AIFsh, a novel apoptosis-inducing factor (AIF) pro-apoptotic isoform with potential pathological relevance in human cancer. J Biol Chem 281:6413–6427

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL (2002) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 42:837–845

    Article  CAS  PubMed  Google Scholar 

  • Devaux F, Lelandais G, Garcia M, Goussard S, Jacq C (2010) Posttranscriptional control of mitochondrial biogenesis: spatio-temporal regulation of the protein import process. FEBS Lett 584:4273–4279

    Article  CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  • Ebneth A, Godemann R, Stamer K et al (1998) Overexpression of Tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143:777–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48:4220–4230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • EMCDDA (2014) European drug report 2014: trends and developments. European Monitoring Centre for Drugs and Drug Addiction, Lisbon

    Google Scholar 

  • Erives GV, Lau SS, Monks TJ (2008) Accumulation of neurotoxic thioether metabolites of 3,4-(±)-methylenedioxymethamphetamine in rat brain. J Pharmacol Exp Ther 324:284–291

    Article  CAS  PubMed  Google Scholar 

  • Escubedo E, Chipana C, Pérez-Sánchez M, Camarasa J, Pubill D (2005) Methyllycaconitine prevents methamphetamine-induced effects in mouse striatum: involvement of alpha7 nicotinic receptors. J Pharmacol Exp Ther 315:658–667

    Article  CAS  PubMed  Google Scholar 

  • Escubedo E, Abad S, Torres I, Camarasa J, Pubill D (2011) Comparative neurochemical profile of 3,4-methylenedioxymethamphetamine and its metabolite alpha-methyldopamine on key targets of MDMA neurotoxicity. Neurochem Int 58:92–101

    Article  CAS  PubMed  Google Scholar 

  • Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Falk EM, Cook VJ, Nichols DE, Sprague JE (2002) An antisense oligonucleotide targeted at MAO-B attenuates rat striatal serotonergic neurotoxicity induced by MDMA. Pharmacol Biochem Behav 72:617–622

    Article  CAS  PubMed  Google Scholar 

  • Feier G, Valvassori SS, Lopes-Borges J et al (2012) Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine. Neurosci Lett 530:75–79

    Article  CAS  PubMed  Google Scholar 

  • Feier G, Valvassori SS, Varela RB et al (2013) Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol Biochem Behav 103:589–596

    Article  CAS  PubMed  Google Scholar 

  • Fišar Z (2012) Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuropsychopharmacol Biol Psychiatry 38:68–77

    Article  PubMed  CAS  Google Scholar 

  • Fischer F, Hamann A, Osiewacz HD (2012) Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 37:284–292

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Azzi A (1997) On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J 11:374–375

    CAS  PubMed  Google Scholar 

  • Fornai F, Giorgi FS, Gesi M, Chen K, Alessrì MG, Shih JC (2001) Biochemical effects of the monoamine neurotoxins DSP-4 and MDMA in specific brain regions of MAO-B-deficient mice. Synapse 39:213–221

    Article  CAS  PubMed  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  • Freezer A, Salem A, Irvine RJ (2005) Effects of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) and para-methoxyamphetamine on striatal 5-HT when co-administered with moclobemide. Brain Res 1041:48–55

    Article  CAS  PubMed  Google Scholar 

  • Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Valvassori SS, Gomes KM et al (2006) Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res 1097:224–229

    Article  CAS  PubMed  Google Scholar 

  • Frezza C, Cipolat S, Martins de Brito O et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Friedman JR, Lackner LL, West M, Di Benedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AHV, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geisler S, Holmström KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves J, Baptista S, Olesen MV et al (2012) Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment. J Neurochem 123:1041–1053

    Article  PubMed  CAS  Google Scholar 

  • Gouzoulis-Mayfrank E, Daumann J (2009) Neurotoxicity of drugs of abuse—the case of methylenedioxyamphetamines (MDMA, ecstasy), and amphetamines. Dialogues Clin Neurosci 11:305–317

    PubMed Central  PubMed  Google Scholar 

  • Green AL, El Hait MA (1980) p-Methoxyamphetamine, a potent reversible inhibitor of type-A monoamine oxidase in vitro and In vivo. J Pharm Pharmacol 32:262–266

    Article  CAS  PubMed  Google Scholar 

  • Grelotti DJ, Kanayama G, Pope HG (2010) Remission of persistent methamphetamine-induced psychosis after electroconvulsive therapy: presentation of a case and review of the literature. Am J Psychiatry 167:17–23

    Article  PubMed  Google Scholar 

  • Hatefi Y, Hanstein WG, Galante Y, Stiggall DL (1975) Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Fed Proc 34:1699–1706

    CAS  PubMed  Google Scholar 

  • Herrmann JM, Longen S, Weckbecker D, Depuydt M (2012) Biogenesis of mitochondrial proteins. Adv Exp Med Biol 748:41–64

    Article  CAS  PubMed  Google Scholar 

  • Hewton R, Salem A, Irvine RJ (2007) Potentiation of 3,4-methylenedioxymethamphetamine-induced 5-HT release in the rat substantia nigra by clorgyline, a monoamine oxidase A inhibitor. Clin Exp Pharmacol Physiol 34:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Ho P, Ho J, Liu H et al (2012) Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson’s disease. Transl Neurodegener 1:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss AJ, Morgan ME, Gibb JW (1979) The long-term effects of multiple doses of methamphetamine on neostriatal tryptophan hydroxylase, tyrosine hydroxylase, choline acetyltransferase and glutamate decarboxylase activities. Life Sci 25:373–378

    Article  Google Scholar 

  • Imam SZ, Jankovic J, Ali SF et al (2005) Nitric oxide mediates increased susceptibility to dopaminergic damage in Nurr1 heterozygous mice. FASEB J 19:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Ingerman E, Perkins EM, Marino M et al (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170:1021–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 117:6535–6546

    Article  CAS  PubMed  Google Scholar 

  • Iwazaki T, McGregor IS, Matsumoto I (2008) Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization. Neurosci Lett 435:113–119

    Article  CAS  PubMed  Google Scholar 

  • James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, Deng X, Bordelon M, McCoy MT, Cadet JL (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J 15:1745–1752

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18:238–251

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Jordà EG, Verdaguer E et al (2004) Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells. Toxicol Appl Pharmacol 196:223–234

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Mateos EM, González-Billault C, Dawson HN, Vitek MP, Avila J (2006) Role of MAP1B in axonal retrograde transport of mitochondria. Biochem J 397:53–59

    Article  PubMed Central  PubMed  Google Scholar 

  • Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johanson CE, Frey KA, Lundahl LH et al (2006) Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology 185:327–338

    Article  CAS  PubMed  Google Scholar 

  • Jones DC, Lau SS, Monks TJ (2004) Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells. J Pharmacol Exp Ther 311:298–306

    Article  CAS  PubMed  Google Scholar 

  • Jones DC, Duvauchelle C, Ikegami A et al (2005) Serotonergic neurotoxic metabolites of ecstasy identified in rat brain. J Pharmacol Exp Ther 313:422–431

    Article  CAS  PubMed  Google Scholar 

  • Kageyama Y, Zhang Z, Roda R et al (2012) Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage. J Cell Biol 197:535–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang D, Hamasaki N (2005) Mitochondrial transcription factor A in the maintenance of mitochondrial DNA. Ann N Y Acad Sci 1042:101–108

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park J, Kim S et al (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Shen S, Dietz K et al (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13:180–189

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim SH, Lu HF, Alano CC (2011) Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture. PLoS ONE 6:e14731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim-Han JS, Antenor-Dorsey JA, O’Malley KL (2011) The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 31:7212–7221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kish SJ, Fitzmaurice PS, Boileau I et al (2009) Brain serotonin transporter in human methamphetamine users. Psychopharmacology 202:649–661

    Article  CAS  PubMed  Google Scholar 

  • Klongpanichapak S, Govitrapong P, Sharma S, Ebadi M (2006) Attenuation of cocaine and methamphetamine neurotoxicity by coenzyme Q10. Neurochem Res 31:303–311

    Article  CAS  PubMed  Google Scholar 

  • Klongpanichapak S, Phansuwan-Pujito P, Ebadi M, Govitrapong P (2007) Melatonin protects SK-N-SH neuroblastoma cells from amphetamine-induced neurotoxicity. J Pineal Res 43:65–73

    Article  CAS  PubMed  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  • Kongsuphol P, Mukda S, Nopparat C, Villarroel A, Govitrapong P (2009) Melatonin attenuates methamphetamine-induced deactivation of the mammalian target of rapamycin signaling to induce autophagy in SK-N-SH cells. J Pineal Res 46:199–206

    Article  CAS  PubMed  Google Scholar 

  • Koppen M, Langer T (2007) Protein degradation within mitochondria: versatile activities of AAA proteases and other peptidases. Crit Rev Biochem Mol Biol 42:221–242

    Article  CAS  PubMed  Google Scholar 

  • Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862

    Article  CAS  PubMed  Google Scholar 

  • Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81:179–196

    Article  CAS  PubMed  Google Scholar 

  • Krasnova IN, Ladenheim B, Cadet JL (2005) Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondria-dependent pathway. FASEB J 19:851–853

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    CAS  PubMed  Google Scholar 

  • Kuhar MJ, Couceyro PR, Lambert PD (1999) Storage and Release of Catecholamines. In: Siegel GJ, Agranoff BW (eds) Basic neurochemistry: molecular, cellular and medical aspects, vol 6. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Langsdorf EF, Chang SL (2011) Methamphetamine-mediated modulation of MOR expression in the SH-SY5Y neuroblastoma cell line. Synapse 65:858–865

    Article  CAS  PubMed  Google Scholar 

  • Lau JWS, Senok S, Stadlin A (2000) Methamphetamine-induced oxidative stress in cultured mouse astrocytes. Ann N Y Acad Sci 914:146–156

    Article  CAS  PubMed  Google Scholar 

  • Lenzi P, Marongiu R, Falleni A et al (2012) A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch Ital Biol 150:194–217

    CAS  PubMed  Google Scholar 

  • Leonardi ET, Azmitia EC (1994) MDMA (ecstasy) inhibition of MAO type A and type B: comparisons with fenfluramine and fluoxetine (Prozac). Neuropsychopharmacology 10:231–238

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen Y, Jones AF et al (2008) Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 105:2169–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Hu Z, Chen B et al (2012) Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 215:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Chandramani-Shivalingappa P, Jin H et al (2012) Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience 210:308–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E (2009) Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ 16:899–909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Sawada T, Lee S et al (2012) Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 8:e1002537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Llorens-Martín M, López-Doménech G, Soriano E, Avila J (2011) GSK3β is involved in the relief of mitochondria pausing in a tau-dependent manner. PLoS ONE 6:e27686

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Macaskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacAskill AF, Atkin TA, Kittler JT (2010) Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci 32:231–240

    Article  PubMed  Google Scholar 

  • Macedo C, Branco PS, Ferreira LM et al (2007) Synthesis and cyclic voltammetry studies of 3,4-methylenedioxymethamphetamine (MDMA) human metabolites. J Health Sci 53:31–42

    Article  CAS  Google Scholar 

  • Maragos WF, Jakel R, Chesnut D et al (2000) Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase. Brain Res 878:218–222

    Article  CAS  PubMed  Google Scholar 

  • Marchetti P, Castedo M, Susin SA et al (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ruiz G, Maldonado V, Ceballos-Cancino G, Grajeda J, Melendez-Zajgla J (2008) Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res 27:48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marzo I, Brenner C, Zamzami N et al (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2–related proteins. J Exp Med 187:1261–1271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumoto T, Maeno Y, Kato H et al (2014) 5-hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: a comparative study using in vivo microdialysis. Eur Neuropsychopharmacol 24:1362–1370

    Article  CAS  PubMed  Google Scholar 

  • McCann UD, Szabo Z, Seckin E et al (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [lsqb]11C[rsqb]McN5652 and [lsqb]11C[rsqb]DASB. Neuropsychopharmacology 30:1741–1750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehdizadeh M, Dabaghian F, Nejhadi A et al (2012) Zingiber officinale alters 3,4-methylenedioxymethamphetamine-induced neurotoxicity in rat brain. Cell J 14:177–184

    PubMed Central  PubMed  Google Scholar 

  • Meyer JS, Grande M, Johnson K, Ali SF (2004) Neurotoxic effects of MDMA (“ecstasy”) administration to neonatal rats. Int J Dev Neurosci 22:261–271

    Article  CAS  PubMed  Google Scholar 

  • Miramar MD, Costantini P, Ravagnan L et al (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398

    Article  CAS  PubMed  Google Scholar 

  • Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 30:4232–4240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misko AL, Sasaki Y, Tuck E, Milbrandt J, Baloh RH (2012) Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci 32:4145–4155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitcheel P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  Google Scholar 

  • Moldoveanu T, Follis AV, Kriwacki RW, Green DR (2014) Many players in BCL-2 family affairs. Trends Biochem Sci 3:101–111

  • Moretti M, Valvassori SS, Steckert AV et al (2011) Tamoxifen effects on respiratory chain complexes and creatine kinase activities in an animal model of mania. Pharmacol Biochem Behav 98:304–310

    Article  CAS  PubMed  Google Scholar 

  • Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 21:281–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicholls DG (2009) Spare respiratory capacity, oxidative stress and excitotoxicity. Biochem Soc Trans 37:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    Article  CAS  PubMed  Google Scholar 

  • Nixdorf WL, Burrows KB, Gudelsky GA, Yamamoto BK (2001) Enhancement of 3,4-methylenedioxymethamphetamine neurotoxicity by the energy inhibitor malonate. J Neurochem 77:647–654

    Article  CAS  PubMed  Google Scholar 

  • Oettinghaus B, Licci M, Scorrano L, Frank S (2012) Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration. Acta Neuropathol 123:189–203

    Article  CAS  PubMed  Google Scholar 

  • Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351:41–58

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MT, Rego AC, Morgadinho MT, Macedo TRA, Oliveira CR (2002) Toxic affects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann N Y Acad Sci 965:487–496

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MT, Rego AC, Macedo TA, Oliveira CR (2003) Drugs of abuse induce apoptotic features in PC12 cells. Ann N Y Acad Sci 1010:667–670

    Article  CAS  PubMed  Google Scholar 

  • Onoue K, Jofuku A, Ban-Ishihara R et al (2013) Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J Cell Sci 126:176–185

    Article  CAS  PubMed  Google Scholar 

  • Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH (2010) Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim Biophys Acta 1802:228–234

    Article  CAS  PubMed  Google Scholar 

  • Otera H, Mihara K (2011) Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 149:241–251

    Article  CAS  PubMed  Google Scholar 

  • Otera H, Wang C, Cleland MM et al (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12:565–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pereira C, Chaves S, Alves S et al (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 76:1398–1410

    Article  CAS  PubMed  Google Scholar 

  • Perlmann T, Wallén-Mackenzie Å (2004) Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res 318:45–52

    Article  CAS  PubMed  Google Scholar 

  • Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508

    CAS  PubMed  Google Scholar 

  • Pilgrim JL, Gerostamoulos D, Drummer OH (2010) Deaths involving serotonergic drugs. Forensic Sci Int 198:110–117

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim JL, Gerostamoulos D, Woodford N, Drummer OH (2012) Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci Int 215:184–188

    Article  CAS  PubMed  Google Scholar 

  • Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105:1638–1643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492:50–65

    Article  PubMed  Google Scholar 

  • Prince JA, Yassin MS, Oreland L (1997) Normalization of cytochrome-c oxidase activity in the rat brain by neuroleptics after chronic treatment with PCP or methamphetamine. Neuropharmacology 36:1665–1678

    Article  CAS  PubMed  Google Scholar 

  • Pubill D, Chipana C, Camins A, Pallàs M, Camarasa J, Escubedo E (2005) Free radical production induced by methamphetamine in rat striatal synaptosomes. Toxicol Appl Pharmacol 204:57–68

    Article  CAS  PubMed  Google Scholar 

  • Puerta E, Hervias I, Goñi-Allo B et al (2010) Methylenedioxymethamphetamine inhibits mitochondrial complex I activity in mice: a possible mechanism underlying neurotoxicity. Br J Pharmacol 160:233–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi X, Qvit N, Su Y, Mochly-Rosen D (2012) Novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802

    Article  PubMed  CAS  Google Scholar 

  • Quinton MS, Yamamoto BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. AAPS J 8:337–347

    Article  Google Scholar 

  • Raimundo N, Baysal BE, Shadel GS (2011) Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med 17:641–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramkissoon A, Wells PG (2013) Developmental role of nuclear factor E2-related factor 2 in mitigating methamphetamine fetal toxicity and postnatal neurodevelopmental deficits. Free Radic Biol Med 65:620–631

    Article  CAS  PubMed  Google Scholar 

  • Ramsay RR, Hunter DJB (2002) Inhibitors alter the spectrum and redox properties of monoamine oxidase A. Biochim Biophys Acta 1601:178–184

    Article  CAS  PubMed  Google Scholar 

  • Ranieri M, Brajkovic S, Riboldi G et al (2013) Mitochondrial fusion proteins and human diseases. Neurol Res Int 2013:293893

    Article  PubMed Central  PubMed  Google Scholar 

  • Rasbach KA, Funk JA, Jayavelu T, Green PT, Schnellmann RG (2010) 5-Hydroxytryptamine receptor stimulation of mitochondrial biogenesis. J Pharmacol Exp Ther 332:632–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 235:93–103

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Seiden LS, Schuster CR (1984) Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res 303:359–364

    Article  CAS  PubMed  Google Scholar 

  • Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881–7888

    CAS  PubMed  Google Scholar 

  • Rojo M, Legros F, Chateau D, Lombès A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674

    CAS  PubMed  Google Scholar 

  • Rothman RB, Partilla JS, Baumann MH, Dersch CM, Carroll FI, Rice KC (2000) Neurochemical neutralization of methamphetamine with high-affinity nonselective inhibitors of biogenic amine transporters: a pharmacological strategy for treating stimulant abuse. Synapse 35:222–227

    Article  CAS  PubMed  Google Scholar 

  • Ryu NK, Yang MH, Jung MS, Jeon JO, Kim KW, Park JH (2007) Gene expression profiling of rewarding effect in methamphetamine treated Bax-deficient mouse. J Biochem Mol Biol 40:475–485

    Article  CAS  PubMed  Google Scholar 

  • Sato M (1992) A lasting vulnerability to psychosis in patients with previous methamphetamine psychosis. Ann N Y Acad Sci 654:160–170

    Article  CAS  PubMed  Google Scholar 

  • Sau D, Rusmini P, Crippa V et al (2011) Dysregulation of axonal transport and motorneuron diseases. Biol Cell 103:87–107

    Article  CAS  PubMed  Google Scholar 

  • Saxton WM, Hollenbeck PJ (2012a) The axonal transport of mitochondria. J Cell Sci 125:2095–2104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saxton WM, Hollenbeck PJ (2012b) The axonal transport of mitochondria. J Cell Sci 125:2095–2104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schapira AHV (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224:331–335

    Article  CAS  PubMed  Google Scholar 

  • Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5:a011304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scorza MC, Carrau C, Silveira R, Zapata-Torres G, Cassels BK, Reyes-Parada M (1997) Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives: structure–activity relationships. Biochem Pharmacol 54:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Sekine Y, Ouchi Y, Takei N et al (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100

    Article  CAS  PubMed  Google Scholar 

  • Sevrioukova IF (2011) Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal 14:2545–2579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shankaran M, Yamamoto BK, Gudelsky GA (1999) Involvement of the serotonin transporter in the formation of hydroxyl radicals induced by 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 385:103–110

    Article  CAS  PubMed  Google Scholar 

  • Sheng Z, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77–93

    Article  CAS  PubMed  Google Scholar 

  • Shiba T, Yamato M, Kudo W, Watanabe T, Utsumi H, Yamada KI (2011) In vivo imaging of mitochondrial function in methamphetamine-treated rats. Neuroimage 57:866–872

    Article  CAS  PubMed  Google Scholar 

  • Shih JC, Grimsby J, Chen K (1999) Molecular biology of monoamine oxidase A and B: their role in the degradation of serotonin. In: Gothert HB (ed) Serotoninergic neurons and 5-HT receptors in the SNC. Springer, Berlin, pp 655–670

    Google Scholar 

  • Shima N, Miyawaki I, Bando K et al (2011) Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology 287:29–37

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Eguchi Y, Kamiike W et al (1996) Involvement of ICE family proteases in apoptosis induced by reoxygenation of hypoxic hepatocytes. Am J Physiol 271:G949–G958

    CAS  PubMed  Google Scholar 

  • Silva DD, Carmo H, Lynch A, Silva E (2013a) An insight into the hepatocellular death induced by amphetamines, individually and in combination: the involvement of necrosis and apoptosis. Arch Toxicol 87:2165–2185

    Article  PubMed  CAS  Google Scholar 

  • Silva DD, Silva E, Carmo H (2013b) Combination effects of amphetamines under hyperthermia—the role played by oxidative stress. J Appl Toxicol 34:637–650

  • Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180

    Article  CAS  PubMed  Google Scholar 

  • Sipos I, Tretter L, Adam-Vizi V (2003) Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 84:112–118

    Article  CAS  PubMed  Google Scholar 

  • Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soleimani M, Katebi M, Alizadeh A, Mohammadzadeh F, Mehdizadeh M (2012) The role of the A2A receptor in cell apoptosis caused by MDMA. Cell J 14:231–236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soleimani Asl S, Farhadi MH, Moosavizadeh K et al (2012) Evaluation of Bcl-2 family gene expression in hippocampus of 3,4-methylenedioxymethamphetamine treated rats. Cell J 13:275–280

    PubMed Central  PubMed  Google Scholar 

  • Soleimani Asl S, Mousavizedeh K, Pourheydar B, Soleimani M, Rahbar E, Mehdizadeh M (2013) Protective effects of N-acetylcysteine on 3,4-methylenedioxymethamphetamine-induced neurotoxicity in male Sprague–Dawley rats. Metab Brain Dis 28:677–686

    Article  CAS  PubMed  Google Scholar 

  • Soleimani Asl S, Saifi B, Sakhaie A, Zargooshnia S, Mehdizadeh M (2015) Attenuation of ecstasy-induced neurotoxicity by N-acetylcysteine. Metab Brain Dis 30:171–181

  • Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spencer JPE, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 71:2112–2122

    Article  CAS  PubMed  Google Scholar 

  • Sprague JE, Nichols DE (1995a) Inhibition of MAO-B protects against MDMA-induced neurotoxicity in the striatum. Psychopharmacology 118:357–359

    Article  CAS  PubMed  Google Scholar 

  • Sprague JE, Nichols DE (1995b) The monoamine oxidase-B inhibitor L-deprenyl protects against 3,4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits. J Pharmacol Exp Ther 273:667–673

    CAS  PubMed  Google Scholar 

  • Srinivasula SM, Hegde R, Saleh A et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116

    Article  CAS  PubMed  Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E-M (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stanley N, Salem A, Irvine RJ (2007) The effects of co-administration of 3,4-methylenedioxymethamphetamine (“ecstasy”) or para-methoxyamphetamine and moclobemide at elevated ambient temperatures on striatal 5-HT, body temperature and behavior in rats. Neuroscience 146:321–329

    Article  CAS  PubMed  Google Scholar 

  • Stephans SE, Whittingham TS, Douglas AJ, Lust WD, Yamamoto BK (1998) Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J Neurochem 71:613–621

    Article  CAS  PubMed  Google Scholar 

  • Stoothoff W, Jones PB, Spires-Jones TL et al (2009) Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport. J Neurochem 111:417–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stumm G, Schlegel J, Schäfer T et al (1999) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. FASEB J 13:1065–1072

    CAS  PubMed  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    CAS  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  CAS  PubMed  Google Scholar 

  • Susin SA, Zamzami N, Castedo M et al (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu Y, Shiotsuki H, Kasai S et al (2011) Enhanced hyperthermia induced by MDMA in parkin knockout mice. Curr Neuropharmacol 9:96–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamburini I, Blandini F, Gesi M et al (2006) MDMA induces caspase-3 activation in the limbic system but not in striatum. Ann N Y Acad Sci 1074:377–381

    Article  CAS  PubMed  Google Scholar 

  • Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thrash B, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Dhanasekaran M (2010) Neurotoxic effects of methamphetamine. Neurochem Res 35:171–179

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Murrin LC, Zheng JC (2009) Mitochondrial fragmentation is involved in methamphetaminei-induced cell death in rat hippocampal neural progenitor cells. PLoS ONE 4:e5546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Twig G, Elorza A, Molina AJ et al (2008a) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Twig G, Hyde B, Shirihai OS (2008b) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Ulukaya E, Acilan C, Yilmaz Y (2011) Apoptosis: Why and how does it occur in biology? Cell Biochem Funct 29:468–480

    Article  CAS  PubMed  Google Scholar 

  • Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–383

    Article  CAS  PubMed  Google Scholar 

  • Vahsen N, Candé C, Brière JJ et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valenzuela A, Pla A, Villanueva E (1987) Effects of chronic administration of dextroamphetamine on enzymes of energy metabolism in regions of the rat brain. Neuropharmacology 26:627–631

    Article  CAS  PubMed  Google Scholar 

  • Valvassori SS, Rezin GT, Ferreira CL et al (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44:903–909

    Article  PubMed  Google Scholar 

  • Valvassori SS, Calixto KV, Budni J et al (2013) Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain. J Neural Transm 120:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Van Laar VS, Berman SB (2013) The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson’s disease. Neurobiol Dis 51:43–55

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vilar S, Ferino G, Quezada E, Santana L, Friedman C (2012) Predicting monoamine oxidase inhibitory activity through ligand-based models. Curr Top Med Chem 12:2258–2274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villemagne V, Yuan J, Wong DF et al (1998) Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J Neurosci 18:419–427

    CAS  PubMed  Google Scholar 

  • Vincow ES, Merrihew G, Thomas RE et al (2013) The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover In vivo. Proc Natl Acad Sci USA 110:6400–6405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volkow ND, Chang L, Wang G et al (2001a) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418

    CAS  PubMed  Google Scholar 

  • Volkow ND, Chang L, Wang GJ et al (2001b) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  CAS  PubMed  Google Scholar 

  • Vuori E, Henry JA, Ojanperä I et al (2003) Death following ingestion of MDMA (ecstasy) and moclobemide. Addiction 98:365–368

    Article  PubMed  Google Scholar 

  • Wadley GD, Choate J, McConell GK (2007) NOS isoform-specific regulation of basal but not exercise-induced mitochondrial biogenesis in mouse skeletal muscle. J Physiol 585:253–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160

    Article  CAS  PubMed  Google Scholar 

  • Wan FJ, Lin HC, Kang BH, Tseng CJ, Tung CS (1999) d-Amphetamine-induced depletion of energy and dopamine in the rat striatum is attenuated by nicotinamide pretreatment. Brain Res Bull 50:167–171

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Su B, Liu W et al (2011a) DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson’s disease. Aging Cell 10:807–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Winter D, Ashrafi G et al (2011b) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  CAS  PubMed  Google Scholar 

  • Warren MW, Larner SF, Kobeissy FH et al (2007) Calpain and caspase proteolytic markers co-localize with rat cortical neurons after exposure to methamphetamine and MDMA. Acta Neuropathol 114:277–286

    Article  CAS  PubMed  Google Scholar 

  • Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ (2009) Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48:2045–2052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willson MC, Wilman AH, Bell EC, Asghar SJ, Silverstone PH (2004) Dextroamphetamine causes a change in regional brain activity in vivo during cognitive tasks: a functional magnetic resonance imaging study of blood oxygen level-dependent response. Biol Psychiatry 56:284–291

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI et al (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  CAS  PubMed  Google Scholar 

  • Wisessmith W, Phansuwan-Pujito P, Govitrapong P, Chetsawang B (2009) Melatonin reduces induction of Bax, caspase and cell death in methamphetamine-treated human neuroblastoma SH-SY5Y cultured cells. J Pineal Res 46:433–440

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Chai J, Suber TL et al (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Wu CW, Ping YH, Yen JC et al (2007) Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmacol 220:243–251

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Tong L, Barrett T et al (2002) Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 22:274–283

    CAS  PubMed  Google Scholar 

  • Yamamoto BK, Moszczynska A, Gudelsky GA (2010) Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 1187:101–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang RF, Zhao GW, Liang ST et al (2012) Mitofilin regulates cytochrome c release during apoptosis by controlling mitochondrial cristae remodeling. Biochem Biophys Res Commun 428:93–98

    Article  CAS  PubMed  Google Scholar 

  • Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  PubMed  Google Scholar 

  • Young R, Glennon RA (1986) Discriminative stimulus properties of amphetamine and structurally related phenalkylamines. Med Res Rev 6:99–130

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21:501–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan H, Gerencser AA, Liot G et al (2007) Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ 14:462–471

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Banerjee A, Banks WA, Ercal N (2009) N-Acetylcysteine amide protects against methamphetamine-induced oxidative stress and neurotoxicity in immortalized human brain endothelial cells. Brain Res 1275:87–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao J, Liu T, Jin S et al (2011) Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J 30:2762–2778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Z, Han V, Han J (2012) New components of the necroptotic pathway. Protein Cell 3:811–817

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Wang KZ, Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9:1663–1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.J.B. was supported by a fellowship (SFRH/BD/64939/2009) from “Fundação para a Ciência e a Tecnologia”, Portugal.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel José Barbosa or Félix Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, D.J., Capela, J.P., Feio-Azevedo, R. et al. Mitochondria: key players in the neurotoxic effects of amphetamines. Arch Toxicol 89, 1695–1725 (2015). https://doi.org/10.1007/s00204-015-1478-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1478-9

Keywords

Navigation