Skip to main content

Advertisement

Log in

Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a widely used recreational drug known to cause selective long-term serotonergic damage.

Objectives

The aim of this study was to characterize the ultrastructure of serotonergic pericarya and proximal neurites in the dorsal raphe nucleus as well as the ultrastructure of serotonergic axons in the frontal cortex of adolescent Dark Agouti rats 3 days after treatment with 15 mg/kg i.p. MDMA.

Methods

Light microscopic immunohistochemistry and pre-embedding immunoelectron microscopy with a novel tryptophan hydroxylase-2 (Tph2) specific antibody, as a marker of serotonergic structures.

Results

Light microscopic analysis showed reduced serotonergic axon density and aberrant swollen varicosities in the frontal cortex of MDMA-treated animals. According to the electron microscopic analysis, Tph2 exhibited diffuse cytoplasmic immunolocalization in dorsal raphe neuronal cell bodies. The ultrastructural-morphometric analysis of these cell bodies did not indicate pathological changes or significant alteration in the cross-sectional areal density of any examined organelles. Proximal serotonergic neurites in the dorsal raphe exhibited no ultrastructural alteration. However, in the frontal cortex among intact fibers, numerous serotonergic axons with destructed microtubules were found. Most of their mitochondria were intact, albeit some injured axons also contained degenerating mitochondria; moreover, a few of them comprised confluent membrane whorls only.

Conclusions

Our treatment protocol does not lead to ultrastructural alteration in the serotonergic dorsal raphe cell bodies and in their proximal neurites but causes impairment in cortical serotonergic axons. In these, the main ultrastructural alteration is the destruction of microtubules although a smaller portion of these axons probably undergo an irreversible damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adori C, Ando RD, Kovacs GG, Bagdy G (2006) Damage of serotonergic axons and immunolocalization of Hsp27, Hsp72, and Hsp90 molecular chaperones after a single dose of MDMA administration in Dark Agouti rat: temporal, spatial, and cellular patterns. J Comp Neurol 497:251–269

    Article  CAS  PubMed  Google Scholar 

  • Aguirre N, Barrionuevo M, Ramirez MJ, Del Rio J, Lasheras B (1999) Alpha-lipoic acid prevents 3, 4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity. NeuroReport 10:3675–3680

    Article  CAS  PubMed  Google Scholar 

  • Ando RD, Adori C, Kirilly E, Molnar E, Kovacs GG, Ferrington L, Kelly PA, Bagdy G (2010) Acute SSRI-induced anxiogenic and brain metabolic effects are attenuated 6 months after initial MDMA-induced depletion. Behav Brain Res 207:280–289

    Article  CAS  PubMed  Google Scholar 

  • Arai R, Karasawa N, Kurokawa K, Kanai H, Horiike K, Ito A (2002) Differential subcellular location of mitochondria in rat serotonergic neurons depends on the presence and the absence of monoamine oxidase type B. Neuroscience 114:825–835

    CAS  PubMed  Google Scholar 

  • Baas PW, Qiang L (2005) Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol 15:183–187

    Article  CAS  PubMed  Google Scholar 

  • Baker KG, Halliday GM, Tork I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301:147–161

    Article  CAS  PubMed  Google Scholar 

  • Balogh B, Molnar E, Jakus R, Quate L, Olverman HJ, Kelly PA, Kantor S, Bagdy G (2004) Effects of a single dose of 3, 4-methylenedioxymethamphetamine on circadian patterns, motor activity and sleep in drug-naive rats and rats previously exposed to MDMA. Psychopharmacology (Berl) 173:296–309

    Article  CAS  Google Scholar 

  • Battaglia G, Yeh SY, De Souza EB (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29:269–274

    Article  CAS  PubMed  Google Scholar 

  • Bellomo G, Mirabelli F, Vairetti M, Iosi F, Malorni W (1990) Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells. I. Biochemical and immunocytochemical features. J Cell Physiol 143:118–128

    Article  CAS  PubMed  Google Scholar 

  • Bendotti C, Baldessari S, Pende M, Tarizzo G, Miari A, Presti ML, Mennini T, Samanin R (1994) Does GFAP mRNA and mitochondrial benzodiazepine receptor binding detect serotonergic neuronal degeneration in rat? Brain Res Bull 34:389–394

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Mechan AO, Sprakes M, Pei Q, Zetterstrom TS, Green AR, Elliott JM (2004) Effect of 5-HT depletion by MDMA on hyperthermia and Arc mRNA induction in rat brain. Psychopharmacology (Berl) 173:346–352

    Article  CAS  Google Scholar 

  • Biezonski DK, Meyer JS (2010) Effects of 3, 4-methylenedioxymethamphetamine (MDMA) on serotonin transporter and vesicular monoamine transporter 2 protein and gene expression in rats: implications for MDMA neurotoxicity. J Neurochem 112:951–962

    Article  CAS  PubMed  Google Scholar 

  • Bonkale WL, Austin MC (2008) 3, 4-Methylenedioxymethamphetamine induces differential regulation of tryptophan hydroxylase 2 protein and mRNA levels in the rat dorsal raphe nucleus. Neuroscience 155:270–276

    Article  CAS  PubMed  Google Scholar 

  • Callahan BT, Cord BJ, Ricaurte GA (2001) Long-term impairment of anterograde axonal transport along fiber projections originating in the rostral raphe nuclei after treatment with fenfluramine or methylenedioxymethamphetamine. Synapse 40:113–121

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271

    Article  CAS  PubMed  Google Scholar 

  • Chou SM, Hartmann HA (1964) Axonal lesions and waltzing syndrome after Idpn administration in rats. With a concept—“Axostasis”. Acta Neuropathol 3:428–450

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z, Ehret M, Maitre M, Hamel E (1995) Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat cerebral cortex and hippocampus: their associations with local blood vessels. Neuroscience 66:555–569

    Article  CAS  PubMed  Google Scholar 

  • de la Torre R, Farre M (2004) Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 25:505–508

    Article  PubMed  Google Scholar 

  • De Repentigny Y, Deschenes-Furry J, Jasmin BJ, Kothary R (2003) Impaired fast axonal transport in neurons of the sciatic nerves from dystonia musculorum mice. J Neurochem 86:564–571

    Article  PubMed  Google Scholar 

  • Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16:70–78

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Hatzidimitriou G, Wlos J, Katz J, Ricaurte G (1995) Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/−)3, 4-methylenedioxymethamphetamine (MDMA, “ecstasy”). J Neurosci 15:5476–5485

    CAS  PubMed  Google Scholar 

  • Fornai F, Lenzi P, Frenzilli G, Gesi M, Ferrucci M, Lazzeri G, Biagioni F, Nigro M, Falleni A, Giusiani M, Pellegrini A, Blandini F, Ruggieri S, Paparelli A (2004) DNA damage and ubiquitinated neuronal inclusions in the substantia nigra and striatum of mice following MDMA (ecstasy). Psychopharmacology (Berl) 173:353–363

    Article  CAS  Google Scholar 

  • Fornai F, Soldani P, Lazzeri G, di Poggio AB, Biagioni F, Fulceri F, Batini S, Ruggieri S, Paparelli A (2005) Neuronal inclusions in degenerative disorders do they represent static features or a key to understand the dynamics of the disease? Brain Res Bull 65:275–290

    Article  CAS  PubMed  Google Scholar 

  • Graham D, Lantos P (2002) Greenfield's neuropathology. Arnold publisher, London

    Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3, 4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  CAS  PubMed  Google Scholar 

  • Gutknecht L, Waider J, Kraft S, Kriegebaum C, Holtmann B, Reif A, Schmitt A, Lesch KP (2008) Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J Neural Transm 115:1127–1132

    Article  CAS  PubMed  Google Scholar 

  • Gutknecht L, Kriegebaum C, Waider J, Schmitt A, Lesch KP (2009) Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice. Eur Neuropsychopharmacol 19:266–282

    Article  CAS  PubMed  Google Scholar 

  • Holzel B, Pfister C (1981) Topography and cytoarchitecture of the raphe nuclei in the rat. J Hirnforsch 22:697–708

    CAS  PubMed  Google Scholar 

  • Joh TH, Shikimi T, Pickel VM, Reis DJ (1975) Brain tryptophan hydroxylase: purification of, production of antibodies to, and cellular and ultrastructural localization in serotonergic neurons of rat midbrain. Proc Natl Acad Sci USA 72:3575–3579

    Article  CAS  PubMed  Google Scholar 

  • Kirilly E, Molnar E, Balogh B, Kantor S, Hansson SR, Palkovits M, Bagdy G (2008) Decrease in REM latency and changes in sleep quality parallel serotonergic damage and recovery after MDMA: a longitudinal study over 180 days. Int J Neuropsychopharmacol 11:795–809

    Article  CAS  PubMed  Google Scholar 

  • Kivell B, Day D, Bosch P, Schenk S, Miller J (2010) MDMA causes a redistribution of serotonin transporter from the cell surface to the intracellular compartment by a mechanism independent of phospho-p38-mitogen activated protein kinase activation. Neuroscience 168:82–95

    Article  CAS  PubMed  Google Scholar 

  • Kovacs GG, Ando RD, Adori C, Kirilly E, Benedek A, Palkovits M, Bagdy G (2007) Single dose of MDMA causes extensive decrement of serotoninergic fibre density without blockage of the fast axonal transport in Dark Agouti rat brain and spinal cord. Neuropathol Appl Neurobiol 33:193–203

    Article  CAS  PubMed  Google Scholar 

  • Linder JC, Young SJ, Groves PM (1995) Electron microscopic evidence for neurotoxicity in the basal ganglia. Neurochem Int 26:195–202

    Article  CAS  PubMed  Google Scholar 

  • Liposits Z, Gorcs T, Trombitas K (1985) Ultrastructural analysis of central serotoninergic neurons immunolabeled by silver-gold-intensified diaminobenzidine chromogen. Completion of immunocytochemistry with X-ray microanalysis. J Histochem Cytochem 33:604–610

    CAS  PubMed  Google Scholar 

  • Malek ZS, Dardente H, Pevet P, Raison S (2005) Tissue-specific expression of tryptophan hydroxylase mRNAs in the rat midbrain: anatomical evidence and daily profiles. Eur J Neurosci 22:895–901

    Article  PubMed  Google Scholar 

  • Malpass A, White JM, Irvine RJ, Somogyi AA, Bochner F (1999) Acute toxicity of 3, 4-methylenedioxymethamphetamine (MDMA) in Sprague-Dawley and Dark Agouti rats. Pharmacol Biochem Behav 64:29–34

    Article  CAS  PubMed  Google Scholar 

  • Marques SA, Taffarel M, Blanco Martinez AM (2003) Participation of neurofilament proteins in axonal dark degeneration of rat's optic nerves. Brain Res 969:1–13

    Article  CAS  PubMed  Google Scholar 

  • Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–530

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS, Piper BJ, Vancollie VE (2008) Development and characterization of a novel animal model of intermittent MDMA (“Ecstasy”) exposure during adolescence. Ann NY Acad Sci 1139:151–163

    Article  CAS  PubMed  Google Scholar 

  • Molliver ME, Berger UV, Mamounas LA, Molliver DC, O'Hearn E, Wilson MA (1990) Neurotoxicity of MDMA and related compounds: anatomic studies. Ann NY Acad Sci 600:649–661, discussion 661-4

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Matsuura T, Takino T, Sano Y (1987) Light and electron microscopic immunohistochemical studies of serotonin nerve fibers in the substantia nigra of the rat, cat and monkey. Anat Embryol (Berl) 176:13–18

    Article  CAS  Google Scholar 

  • Morshedi MM, Rademacher DJ, Meredith GE (2009) Increased synapses in the medial prefrontal cortex are associated with repeated amphetamine administration. Synapse 63:126–135

    Article  CAS  PubMed  Google Scholar 

  • Narciso MS, Hokoc JN, Martinez AM (2001) Watery and dark axons in Wallerian degeneration of the opossum's optic nerve: different patterns of cytoskeletal breakdown? An Acad Bras Cienc 73:231–243

    CAS  PubMed  Google Scholar 

  • Nixon RA, Cataldo AM (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18:489–496

    Article  CAS  PubMed  Google Scholar 

  • O'Callaghan JP, Miller DB (1993) Quantification of reactive gliosis as an approach to neurotoxicity assessment. NIDA Res Monogr 136:188–212

    PubMed  Google Scholar 

  • O'Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8:2788–2803

    PubMed  Google Scholar 

  • O'Shea E, Granados R, Esteban B, Colado MI, Green AR (1998) The relationship between the degree of neurodegeneration of rat brain 5-HT nerve terminals and the dose and frequency of administration of MDMA (‘ecstasy’). Neuropharmacology 37:919–926

    Article  PubMed  Google Scholar 

  • Orio L, O'Shea E, Sanchez V, Pradillo JM, Escobedo I, Camarero J, Moro MA, Green AR, Colado MI (2004) 3, 4-Methylenedioxymethamphetamine increases interleukin-1beta levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5-HT depletion. J Neurochem 89:1445–1453

    Article  CAS  PubMed  Google Scholar 

  • WC PG (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press Inc., New York

    Google Scholar 

  • Pickel VM, Joh TH, Reis DJ (1976) Monoamine-synthesizing enzymes in central dopaminergic, noradrenergic and serotonergic neurons. Immunocytochemical localization by light and electron microscopy. J Histochem Cytochem 24:792–306

    CAS  PubMed  Google Scholar 

  • Puerta E, Hervias I, Aguirre N (2009) On the mechanisms underlying 3, 4-methylenedioxymethamphetamine toxicity: the dilemma of the chicken and the egg. Neuropsychobiology 60:119–129

    Article  CAS  PubMed  Google Scholar 

  • Quate L, McBean DE, Ritchie IM, Olverman HJ, Kelly PA (2004) Acute methylenedioxymethamphetamine administration: effects on local cerebral blood flow and glucose utilisation in the Dark Agouti rat. Psychopharmacology (Berl) 173:287–295

    Article  CAS  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, DeLanney LE, Irwin I, Molliver ME, Langston JW (1988) (+/−)3, 4-Methylenedioxymethamphetamine selectively damages central serotonergic neurons in nonhuman primates. JAMA 260:51–55

    Article  CAS  PubMed  Google Scholar 

  • Rowland NE, Kalehua AN, Li BH, Semple-Rowland SL, Streit WJ (1993) Loss of serotonin uptake sites and immunoreactivity in rat cortex after dexfenfluramine occur without parallel glial cell reactions. Brain Res 624:35–43

    Article  CAS  PubMed  Google Scholar 

  • Ryan LJ, Linder JC, Martone ME, Groves PM (1990) Histological and ultrastructural evidence that D-amphetamine causes degeneration in neostriatum and frontal cortex of rats. Brain Res 518:67–77

    Article  CAS  PubMed  Google Scholar 

  • Sahenk Z, Mendell JR (1983) Studies on the morphologic alterations of axonal membraneous organelles in neurofilamentous neuropathies. Brain Res 268:239–247

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Kiyatkin EA (2009) Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. J Chem Neuroanat 37:18–32

    Article  CAS  PubMed  Google Scholar 

  • Smiley JF, Goldman-Rakic PS (1996) Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy. J Comp Neurol 367:431–443

    Article  CAS  PubMed  Google Scholar 

  • Spencer PS, Schaumburg HH (1975) Nervous system dying-back disease produced by 2, 5-hexanedione. Trans Am Neurol Assoc 100:148–151

    CAS  PubMed  Google Scholar 

  • Tanner KD, Levine JD, Topp KS (1998) Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat. J Comp Neurol 395:481–492

    Article  CAS  PubMed  Google Scholar 

  • Tork I (1990) Anatomy of the serotonergic system. Ann NY Acad Sci 600:9–34, discussion 34-5

    Article  CAS  PubMed  Google Scholar 

  • Vorhees CV, Morford LL, Inman SL, Reed TM, Schilling MA, Cappon GD, Moran MS, Nebert DW (1999) Genetic differences in spatial learning between Dark Agouti and Sprague-Dawley strains: possible correlation with the CYP2D2 polymorphism in rats treated neonatally with methamphetamine. Pharmacogenetics 9:171–181

    CAS  PubMed  Google Scholar 

  • Wang X, Baumann MH, Xu H, Rothman RB (2004) 3, 4-methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse 53:240–248

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Baumann MH, Dersch CM, Rothman RB (2007) Restoration of 3, 4-methylenedioxymethamphetamine-induced 5-HT depletion by the administration of L-5-hydroxytryptophan. Neuroscience 148:212–220

    Article  CAS  PubMed  Google Scholar 

  • Weissmann D, Belin MF, Aguera M, Meunier C, Maitre M, Cash CD, Ehret M, Mandel P, Pujol JF (1987) Immunohistochemistry of tryptophan hydroxylase in the rat brain. Neuroscience 23:291–304

    Article  CAS  PubMed  Google Scholar 

  • Welt K, Weiss J, Martin R, Dettmer D, Hermsdorf T, Asayama K, Meister S, Fitzl G (2004) Ultrastructural, immunohistochemical and biochemical investigations of the rat liver exposed to experimental diabetes und acute hypoxia with and without application of Ginkgo extract. Exp Toxicol Pathol 55:331–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to Katalin Komjáti, Ágnes Druskóné, Ildikó Csontos, and Mariann Lenkey for their excellent technical assistance. We also thank Dr. Katalin Gallatz and Dr. Lajos László for the invaluable discussion.

This study was supported by the 6th Framework Program of the European Community, LSHM-CT-2004-503474, the Hungarian Research Fund Grant T020500, the Ministry of Welfare Research Grant 460/2006, the Deutsche Forschungsgemeinschaft (SFB 581/B9, and SFB TRR 58/A1, A5) and TAMOP-4.2.1.B-09/1/KMR-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Bagdy.

Additional information

The high resolution version of the original images are available in the supplementary figures.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ádori, C., Lőw, P., Andó, R.D. et al. Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology 213, 377–391 (2011). https://doi.org/10.1007/s00213-010-2041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2041-2

Keywords

Navigation