Skip to main content
Log in

Impact of lactic acid bacteria strains against Listeria monocytogenes biofilms on various food-contact surfaces

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is one of the most important foodborne pathogens, causing listeriosis, a disease characterized by high mortality rates. This microorganism, commonly found in food production environments and transmitted to humans by consuming contaminated food, has the ability to form biofilms by attaching to a wide variety of surfaces. Traditional hygiene and sanitation procedures are not effective enough to completely remove L. monocytogenes biofilms from food-contact surfaces, which makes them a persistent threat to food safety. Alternative approaches to combating Listeria biofilms are needed, and the use of lactic acid bacteria (LAB) and their antimicrobial compounds shows promise. The present study investigated the effect of Lactobacillus strains, previously isolated from various foods and known to possess antimicrobial properties, on the biofilm formation of L. monocytogenes on three different food-contact surfaces. To study L. monocytogenes IVb ATCC 19115 type, culture was preferred to represent serotype IVb, which is responsible for the vast majority of listeriosis cases. The results demonstrated that cell-free supernatants (CFSs) of LAB strains inhibited biofilm formation by up to 51.57% on polystyrene, 60.96% on stainless steel, and 30.99% on glass surfaces. Moreover, these CFSs were effective in eradicating mature biofilms, with reductions of up to 78.86% on polystyrene, 73.12% on stainless steel, and 72.63% on glass surfaces. The strong inhibition rates of one strain of L. curvatus (P3X) and two strains of L. sakei (8.P1, 28.P2) used in the present study imply that they may provide an alternate technique for managing Listeria biofilms in food production environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Materials and the datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

Current investigation has received no funding support from any entity.

Author information

Authors and Affiliations

Authors

Contributions

All analyses were performed by Emine Dinçer.

Corresponding author

Correspondence to Emine Dinçer.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPEG 209 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinçer, E. Impact of lactic acid bacteria strains against Listeria monocytogenes biofilms on various food-contact surfaces. Arch Microbiol 206, 80 (2024). https://doi.org/10.1007/s00203-023-03811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03811-6

Keywords

Navigation