Skip to main content

Advertisement

Log in

Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is a well-known foodborne pathogen that usually lives as biofilm to cope with unfavorable surroundings. Bacteriocins have been reported as antimicrobial compounds, and their bactericidal actions have been extensively studied, but their antibiofilm actions have rarely been studied. Previous study indicated that bacteriocin BMP32r has a broad-spectrum antibacterial activity. In this study, the efficacy of BMP32r against the planktonic bacteria, inhibition of forming biofilm, destruction of mature biofilm, and kill persisters of L. monocytogenes ATCC 15,313 was determined. BMP32r exhibited the bactericidal effect on L. monocytogenes planktonic bacteria. Crystal violet staining showed that sub-minimum inhibitory concentrations (SICs) of BMP32r (1/32 × MIC and 1/16 × MIC) significantly (p < 0.001) inhibit the biofilm formation. In addition, the results of CCK-8, plate count, ruthenium red staining, scanning electron microscopy, and real-time quantitative PCR assay showed that SICs of BMP32r reduced cell adhesion, exopolysaccharide production, quorum sensing, and virulence genes expression in biofilm formation. Moreover, higher concentrations of BMP32r (2 × MIC and 4 × MIC) disrupt the mature biofilm by killing the bacteria in the biofilm and kill L. monocytogenes persisters bacteria effectively. Therefore, BMP32r has promising potential as an antibiofilm agent to combat L. monocytogenes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gilbreth SE, Call JE, Wallace FM, Scott VN, Chen Y, Luchansky JB (2005) Relatedness of Listeria monocytogenes isolates recovered from selected ready-to-eat foods listeriosis patients in the United States. Appl Environ Microbiol 71:8115–8122. https://doi.org/10.1128/aem.71.12.8115-8122.2005

  2. Vazquez-Armenta FJ, Hernandez-Oñate MA, Martinez-Tellez MA, Lopez-Zavala AA, Gonzalez-Aguilar GA, Gutierrez-Pacheco MM, Ayala-Zavala JF (2020) Quercetin repressed the stress response factor (sigB) and virulence genes (prfA, actA, inlA, and inlC), lower the adhesion, and biofilm development of L. monocytogenes. Food Microbiol 87:103377. https://doi.org/10.1016/j.fm.2019.103377

  3. Rodriguez C, Taminiau B, García-Fuentes E, Daube G, Korsak N (2021) Listeria monocytogenes dissemination in farming and primary production: sources, shedding and control measures. Food Control 120:107540. https://doi.org/10.1016/j.foodcont.2020.107540

  4. Velge P, Roche SM (2010) Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 5:1799–1821. https://doi.org/10.1016/10.2217/fmb.10.134

    Article  CAS  PubMed  Google Scholar 

  5. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008

  6. Carpentier B, Cerf O (2011) Review — persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8. https://doi.org/10.1016/j.ijfoodmicro.2011.01.005

    Article  PubMed  Google Scholar 

  7. Du W, Zhou M, Liu Z, Chen Y, Li R (2018) Inhibition effects of low concentrations of epigallocatechin gallate on the biofilm formation and hemolytic activity of Listeria monocytogenes. Food Control 85:119–126. https://doi.org/10.1016/j.foodcont.2017.09.011

  8. Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ (2014) Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 77:150–170. https://doi.org/10.4315/0362-028x.jfp-13-150

  9. Chen J-Q, Regan P, Laksanalamai P, Healey S, Hu Z (2017) Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. Food Sci Hum Well 6:97–120. https://doi.org/10.1016/j.fshw.2017.06.002

  10. Wang J, Ray AJ, Hammons SR, Oliver HF (2015) Persistent and transient Listeria monocytogenes trains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Foodborne Pathog Dis 12:151–158. https://doi.org/10.1089/fpd.2014.1837

    Article  CAS  PubMed  Google Scholar 

  11. Yu H, Liu Y, Li L, Guo Y, Xie Y, Cheng Y, Yao W (2020) Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends Food Sci Technol 96:91–101. https://doi.org/10.1016/j.tifs.2019.12.010

    Article  CAS  Google Scholar 

  12. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  13. Fang K, Park O-J, Hong SH (2020) Controlling biofilms using synthetic biology approaches. Biotechnol Adv 40:107518. https://doi.org/10.1016/j.biotechadv.2020.107518

  14. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2015) Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 198:1–15. https://doi.org/10.1007/s00203-015-1148-6

  15. Blackledge MS, Worthington RJ, Melander C (2013) Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol 13:699–706. https://doi.org/10.1016/j.coph.2013.07.004

  16. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner K, Zaat SAJ, Drijfhout JW, Nibbering PH (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044. https://doi.org/10.1126/scitranslmed.aan4044

  17. Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370.https://doi.org/10.1038/nature12790

  18. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. https://doi.org/10.1038/nrmicro2937

  19. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:p.777–788. https://doi.org/10.1038/nrmicro1273

  20. Yang SC, Lin CH, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241. https://doi.org/10.3389/fmicb.2014.00683

  21. Bag A, Chattopadhyay RR (2017) Synergistic antibacterial and antibiofilm efficacy of nisin in combination with pcoumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Lett Appl Microbiol 65:366–372. https://doi.org/10.1111/lam.12793

  22. Pimentel-Filho NdJ, Martins MCdF, Nogueira GB, Mantovani HC, Vanetti MCD (2014) Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion. Int J Food Microbiol 190:1–8. https://doi.org/10.1016/j.ijfoodmicro.2014.08.004

    Article  CAS  Google Scholar 

  23. Seo H-J, Kang S-S (2020) Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control 117:107361. https://doi.org/10.1016/j.foodcont.2020.107361

    Article  CAS  Google Scholar 

  24. Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M, Rosales MJ, Sánchez-Moreno M, Valdivia E, Martínez-Bueno M, Marín C, Gálvez J, Maqueda M (2019) Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res 20:129–139. https://doi.org/10.1016/j.jare.2019.06.003

  25. Zhu X, Zhao Y, Sun Y, Gu Q (2014) Purification and characterisation of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008. Food Chem 165:216–223. https://doi.org/10.1016/j.foodchem.2014.05.034

  26. Qiao Z, Sun H, Zhou Q, Yi L, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X (2020) Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. Int J Biol Macromol 164:845–854. https://doi.org/10.1016/j.ijbiomac.2020.07.192

    Article  CAS  PubMed  Google Scholar 

  27. Institute CLS (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically CLSI approved standard—seventh edition CLSI document M7-A72006

  28. Guo D, Wang S, Li J, Bai F, Yang Y, Xu Y, Liang S, Xia X, Wang X, Shi C (2020) The antimicrobial activity of coenzyme Q0 against planktonic and biofilm forms of Cronobacter sakazakii. Food Microbiol 86:103337. https://doi.org/10.1016/j.fm.2019.103337

  29. Lazar V, Martins A, Spohn R, Daruka L, Grezal G, Fekete G, Szamel M, Jangir PK, Kintses B, Csorgo B, Nyerges A, Gyorkei A, Kincses A, Der A, Walter FR, Deli MA, Urban E, Hegedus Z, Olajos G, Mehi O, Balint B, Nagy I, Martinek TA, Papp B, Pal C (2018) Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol 3:718–731. https://doi.org/10.1038/s41564-018-0164-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Felipe V, Breser ML, Bohl LP, Rodrigues da Silva E, Morgante CA, Correa SG, Porporatto C (2019) Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. Int J Biol Macromol 126:60–67. https://doi.org/10.1016/j.ijbiomac.2018.12.159

  31. Xu S, Wu Q, Guo G, Ding X (2015) The protective effects of urocortin1 against intracerebral hemorrhage by activating JNK1/2 and p38 phosphorylation and further increasing VEGF via corticotropin-releasing factor receptor 2. Neurosci Lett 589:31–36. https://doi.org/10.1016/j.neulet.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  32. Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K (2013) Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol 36:79–89. https://doi.org/10.1016/j.fm.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  33. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

  34. Vazquez-Armenta FJ, Bernal-Mercado AT, Tapia-Rodriguez MR, Gonzalez-Aguilar GA, Lopez-Zavala AA, Martinez-Tellez MA, Hernandez-Oñate MA, Ayala-Zavala JF (2018) Quercetin reduces adhesion and inhibits biofilm development by Listeria monocytogenes by reducing the amount of extracellular proteins. Food Control 90:266–273. https://doi.org/10.1016/j.foodcont.2018.02.041

  35. Razavi Rohani SM, Moradi M, Mehdizadeh T, Saei-Dehkordi SS, Griffiths MW (2011) The effect of nisin and garlic (Allium sativum L.) essential oil separately and in combination on the growth of Listeria monocytogenes. LWT - Food Sci Technol 44:2260–2265. https://doi.org/10.1016/j.lwt.2011.07.020

  36. Fan Q, Zhang Y, Yang H, Wu Q, Shi C, Zhang C, Xia X, Wang X (2018) Effect of coenzyme Q0 on biofilm formation and attachment-invasion efficiency of Listeria monocytogenes. Food Control 90:274–281. https://doi.org/10.1016/j.foodcont.2018.02.047

  37. Wang Y, Qin Y, Zhang Y, Wu R, Li P (2019) Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes. Food Control 97:87–93. https://doi.org/10.1016/j.foodcont.2018.10.025

    Article  CAS  Google Scholar 

  38. Zhang Y, Yang J, Liu Y, Wu Y, Fang Z, Wang Y, Sun L, Deng Q, Gooneratne R, Xiao L (2020) A novel bacteriocin PE-ZYB1 produced by Pediococcus pentosaceus zy-B isolated from intestine of Mimachlamys nobilis: purification, identification and its anti-listerial action. LWT - Food Sci Techno 118:108760. https://doi.org/10.1016/j.lwt.2019.108760

  39. Liu G, Ren G, Zhao L, Cheng L, Wang C, Sun B (2017) Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes. Food Control 73:854–861. https://doi.org/10.1016/j.foodcont.2016.09.036

    Article  CAS  Google Scholar 

  40. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279. https://doi.org/10.1007/s00253-010-2521-7

  41. Parrino B, Schillaci D, Carnevale I, Giovannetti E, Diana P, Cirrincione G, Cascioferro S (2019) Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 161:154–178. https://doi.org/10.1016/j.ejmech.2018.10.036

  42. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Immunol 28:261–289. https://doi.org/10.1016/j.femsre.2003.09.004

  43. Blank BS, Abi Abdallah DS, Park JJ, Nazarova EV, Bitar AP, Maurer KJ, Marquis H (2014) Misregulation of the broad-range phospholipase C activity increases the susceptibility of Listeria monocytogenes to intracellular killing by neutrophils. Microbes Infect 16:104–113. https://doi.org/10.1016/j.micinf.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  44. Karthikeyan R, Gayathri P, Gunasekaran P, Jagannadham MV, Rajendhran J (2020) Functional analysis of membrane vesicles of Listeria monocytogenes suggests a possible role in virulence and physiological stress response. Microb Pathog 142:104076. https://doi.org/10.1016/j.micpath.2020.104076

    Article  CAS  PubMed  Google Scholar 

  45. Chen B-Y, Kim T-J, Silva JL, Jung Y-S (2009) Positive correlation between the expression of inlA and inlB genes of Listeria monocytogenes and its attachment strength on glass surface. Food Biophys 4:304–311. https://doi.org/10.1007/s11483-009-9128-5

  46. Monack DM, Travier L, Guadagnini S, Gouin E, Dufour A, Chenal-Francisque V, Cossart P, Olivo-Marin J-C, Ghigo J-M, Disson O, Lecuit M (2013) ActA promotes Listeria monocytogenes aggregation, intestinal colonization and carriage. PLoS Pathog 9:e1003131. https://doi.org/10.1371/journal.ppat.1003131

    Article  CAS  Google Scholar 

  47. Lemon KP, Freitag NE, Kolter R (2010) The virulence regulator PrfA a promotes biofilm formation by Listeria monocytogenes. J Bacteriol 192:3969–3976. https://doi.org/10.1128/jb.00179-10

  48. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT - Food Sci Techno 43:573–583. https://doi.org/10.1016/j.lwt.2009.12.008

  49. Yan J, Bassler BL (2019) Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26:15–21. https://doi.org/10.1016/j.chom.2019.06.002

  50. Li X-H, Lee J-H (2017) Antibiofilm agents: a new perspective for antimicrobial strategy. J Microbiol 55:753–766. https://doi.org/10.1007/s12275-017-7274-x

  51. Davison WM, Pitts B, Stewart PS (2010) Spatial and temporal patterns of biocide action against staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 54:2920–2927. https://doi.org/10.1128/aac.01734-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751. https://doi.org/10.1128/jb.183.23.6746-6751.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (Grant No. 31901667).

Author information

Authors and Affiliations

Authors

Contributions

Zhu Qiao and Xin Lü designed the study and wrote the manuscript; Zhu Qiao, Leshan Zhang, and Bianfang Liu performed the experiments; Zhu Qiao, Xin Wang, and Yuanyuan Shan analyzed the data; Zhu Qiao, Yanglei Yi, and Bianfang Liu interpreted the results of experiments; and Zhu Qiao and Yuan Zhou prepared figures. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xin Wang or Xin Lü.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Zhang, L., Wang, X. et al. Antibiofilm Effects of Bacteriocin BMP32r on Listeria monocytogenes. Probiotics & Antimicro. Prot. 14, 1067–1076 (2022). https://doi.org/10.1007/s12602-021-09863-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09863-8

Keywords

Navigation