Skip to main content

Advertisement

Log in

Listeria monocytogenes an Emerging Pathogen: a Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions

  • Review
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Listeria monocytogenes, the third most deleterious zoonotic pathogen, is a major causative agent of animal and human listeriosis, an infection related to the consumption of contaminated food products. Even though, this pathogen has been responsible for the outbreaks of foodborne infections in the early 1980s, the major outbreaks have been reported during the past two decades. Listeriosis infection in the host is a rare but life-threatening disease with major public health and economic implications. Extensive reports on listeriosis outbreaks are associated with milk and milk products, meat and meat products, and fresh produce. This bacterium can adapt to any environmental and stress conditions, making it a prime causative agent for major foodborne diseases. The pathogen could survive an antibiotic treatment and persist in the host cell, thereby escaping the standard diagnostic practices. The current review strives to provide concise information on the epidemiology, serotypes, and pathogenesis of the L. monocytogenes to decipher the knowledge on the endurance of the pathogen inside the host and food products as a vehicle for Listeria contaminations. In addition, various detection methods for Listeria species from food samples and frontline regimens of L. monocytogenes treatment have also been discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data associated with this paper can be accessed by contacting the corresponding author.

Abbreviations

US:

United States

L. monocytogenes :

Listeria monocytogenes

16S rRNA:

16 S ribosomal ribonucleic acid

DNA:

Deoxyribonucleic acid

PFGE:

Pulse field gel electrophoresis

MLST:

Multilocus sequence typing

CCs:

Clonal complexes

PCR:

Polymerase chain reaction

LAP:

Listeria adhesion protein

AdhE:

Acetaldehyde alcohol dehydrogenase

Hsp60:

Heat shock protein 60

NF-jB:

Nuclear factor-jB

MLCK:

Myosin light chain kinase

InlA:

Internalin A

InlB:

Internalin B

LLO:

Listeriolysin O

ActA:

Actin polymerization protein

PC-PLC:

Phosphatidylcholine-specific phospholipase

PI-PLC:

Phosphatidylinositol-specific phospholipase

TNFα:

Tumor necrosis factor α

IL:

Interleukin

HIV:

Human immunodeficiency virus

MD:

Municipality districts

CFU:

Colony-forming units

FDA-BAM:

Food and Drug Administration-Bacteriological and Analytical Methods

USDA-FSIS:

United States of Agriculture-Food Safety and Inspection Service

ISO:

International Organization of Standard

UVM:

University of Vermont Medium

PALCAM:

Polymyxin-acriflavine-lithium-chloride-ceftazidime-aesculin-mannitol

MOX:

Modified Oxford agar medium

ALOA:

Listeria agar with Ottaviani and Agosti

BCM:

Biosynth Chromogenic Medium

OCLA:

Listeria agar (Oxoid) and chromID Ottaviani Agosti Agar

OAA:

Oxolinic Acid–Aesculin–Azide Agar

References

  1. Shamloo E, Hosseini H, Moghadam ZA, Larsen MH, Haslberger A, Alebouyeh M (2019) Importance of Listeria monocytogenes in food safety: a review of its prevalence, detection, and antibiotic resistance. Iran J Vet Res 20(4):241–254

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Silk BJ, Mahon BE, Griffin PM, Gould LH, Tauxe RV, Crim SM, Jackson KA, Gerner-Smidt P, Herman KM, Henao OL (2013) Vital signs: Listeria illnesses, deaths, and outbreaks—United States, 2009–2011. Morb Mortal Wkly Rep 62(22):448–452

    Google Scholar 

  3. Balali GI, Yar DD, Afua Dela VG, Adjei-Kusi P (2020) Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. Int J Microbiol 1–13. https://doi.org/10.1155/2020/3029295

  4. Osek J, Lachtara B, Wieczorek K (2022) Listeria monocytogenes—how this pathogen survives in food-production environments? Front Microbiol 13:1–21. https://doi.org/10.3389/fmicb.2022.866462

    Article  Google Scholar 

  5. Jadhav S (2015) Detection, subtyping and control of Listeria monocytogenes in food processing environments. Doctoral dissertation, Melbourne, Swinburne University of Technology

  6. Matle I, Mbatha KR, Madoroba E (2020) A review of Listeria monocytogenes from meat and meat products: epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J Vet Res 87(1), 1–20. https://hdl.handle.net/10520/ejc-opvet-v87-n1-a9

  7. Nyarko EB, Donnelly CW (2015) Listeria monocytogenes: strain heterogeneity, methods, and challenges of subtyping. J Food Sci 80(12):M2868–M2878. https://doi.org/10.1111/1750-3841.13133

    Article  CAS  PubMed  Google Scholar 

  8. Byrne VDV, Hofer E, Vallim DC, Almeida RCDC (2016) Occurrence and antimicrobial resistance patterns of Listeria monocytogenes isolated from vegetables. Braz J Microbiol 47:438–443. https://doi.org/10.1016/j.bjm.2015.11.033

    Article  CAS  Google Scholar 

  9. Fallah AA, Saei-Dehkordi SS, Rahnama M, Tahmasby H, Mahzounieh M (2012) Prevalence and antimicrobial resistance patterns of Listeria species isolated from poultry products marketed in Iran. Food Control 28(2):327–332. https://doi.org/10.1016/j.foodcont.2012.05.014

    Article  CAS  Google Scholar 

  10. Barbuddhe SB, Malik SVS, Kumar JA, Kalorey DR, Chakraborty T (2012) Epidemiology and risk management of listeriosis in India. Int J Food Microbiol 154(3):113–118. https://doi.org/10.1016/j.ijfoodmicro.2011.08.030

    Article  CAS  PubMed  Google Scholar 

  11. Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S (2021) Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 47(5):647–666. https://doi.org/10.1080/1040841X.2021.1911930

    Article  CAS  PubMed  Google Scholar 

  12. Núñez-Montero K, Leclercq A, Moura A, Vales G, Peraza J, Pizarro-Cerdá J, Lecuit M (2018) Listeria costaricensis sp. nov. Int J Syst Evol Microbiol 68(3):844–850. https://doi.org/10.1099/ijsem.0.002596

    Article  CAS  PubMed  Google Scholar 

  13. Leclercq A, Moura A, Vales G, Tessaud-Rita N, Aguilhon C, Lecuit M (2019) Listeria thailandensis sp. nov. Int J Syst Evol Microbiol 69(1):74–81. https://doi.org/10.1099/ijsem.0.003097

    Article  CAS  PubMed  Google Scholar 

  14. Lourenco A, Linke K, Wagner M, Stessl B (2022) The saprophytic lifestyle of Listeria monocytogenes and entry into the food-processing environment. Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.789801

  15. Moura A, Disson O, Lavina M, Thouvenot P, Huang L, Leclercq A, Fredriksson-Ahomaa M, Eshwar AK, Stephan R, Lecuit M (2019) Atypical hemolytic Listeria innocua isolates are virulent, albeit less than Listeria monocytogenes. Infect Immun 87(4):1–13. https://doi.org/10.1128/IAI.00758-18

    Article  Google Scholar 

  16. Orsi RH, Wiedmann M (2016) Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 100(12):5273–5287. https://doi.org/10.1007/s00253-016-7552-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bayata SD (2020) Epidemiology of Listerosis in animal and human in Ethiopia. Int J Vet Sci Res 6(2):154–158

    Google Scholar 

  18. Rocourt J, Hof H, Schrettenbrunner A, Malinverni R, Bille J (1986) Acute purulent Listeria seelingeri meningitis in an immunocompetent adult. Schweizerische Medizinische Wochenschrift 116(8):248–251

    CAS  PubMed  Google Scholar 

  19. Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301(2):79–96. https://doi.org/10.1016/j.ijmm.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigues CS, Sá CVGCD, Melo CBD (2016) An overview of Listeria monocytogenes contamination in ready to eat meat, dairy and fishery foods. Ciência Rural 47(2):1–8. https://doi.org/10.1590/0103-8478cr20160721

    Article  Google Scholar 

  21. Maury MM, Bracq-Dieye H, Huang L, Vales G, Lavina M, Thouvenot P, Disson O, Leclercq A, Brisse S, Lecuit M (2019) Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products. Nat Commun 10(1):1–13. https://doi.org/10.1038/s41467-019-10380-0

    Article  CAS  Google Scholar 

  22. Painset A, Björkman JT, Kiil K, Guillier L, Mariet JF, Félix B, Amar C, Rotariu O, Roussel S, Perez-Reche F, Brisse S (2019) LiSEQ–whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microbial Genomics 5(2):1–11. https://doi.org/10.1099/mgen.0.000257

    Article  CAS  Google Scholar 

  23. Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD (2021) Pathogenicity and virulence of Listeria monocytogenes: a trip from environmental to medical microbiology. Virulence 12(1):2509–2545. https://doi.org/10.1080/21505594.2021.1975526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin Y, Yao H, Doijad S, Kong S, Shen Y, Cai X, Tan W, Wang Y, Feng Y, Ling Z, Wang G (2019) A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates. Nat Commun 10(1):1–16. https://doi.org/10.1038/s41467-019-12072-1

    Article  CAS  Google Scholar 

  25. Feng Y, Yao H, Chen S, Sun X, Yin Y, Jiao XA (2020) Rapid detection of hypervirulent serovar 4h Listeria monocytogenes by multiplex PCR. Front Microbiol 11:1–7. https://doi.org/10.3389/fmicb.2020.01309

    Article  Google Scholar 

  26. Fleming DW, Cochi SL, MacDonald KL, Brondum J, Hayes PS, Plikaytis BD, Holmes MB, Audurier A, Broome CV, Reingold AL (1985) Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med 312(7):404–407. https://doi.org/10.1056/NEJM198502143120704

    Article  CAS  PubMed  Google Scholar 

  27. McLauchlin J, Mitchell R, Smerdon WJ, Jewell K (2004) Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. Int J Food Microbiol 92(1):15–33. https://doi.org/10.1016/S0168-1605(03)00326-X

    Article  CAS  PubMed  Google Scholar 

  28. Wu S, Wu Q, Zhang J, Chen M, Yan ZA, Hu H (2015) Listeria monocytogenes prevalence and characteristics in retail raw foods in China. PLoS One 10(8):1–16. https://doi.org/10.1371/journal.pone.0136682

    Article  CAS  Google Scholar 

  29. Kayode AJ, Okoh AI (2022) Assessment of multidrug-resistant Listeria monocytogenes in milk and milk product and One Health perspective. PLoS One 17(7):1–21. https://doi.org/10.1371/journal.pone.0270993

    Article  CAS  Google Scholar 

  30. Braga V, Vázquez S, Vico V, Pastorino V, Mota MI, Legnani M, Schelotto F, Lancibidad G, Varela G (2017) Prevalence and serotype distribution of Listeria monocytogenes isolated from foods in Montevideo-Uruguay. Braz J Microbiol 48:689–694. https://doi.org/10.1016/j.bjm.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Osman KM, Samir A, Abo-Shama UH, Mohamed EH, Orabi A, Zolnikov T (2016) Determination of virulence and antibiotic resistance pattern of biofilm producing Listeria species isolated from retail raw milk. BMC Microbiol 16(1):1–13. https://doi.org/10.1186/s12866-016-0880-7

    Article  CAS  Google Scholar 

  32. Owusu-Kwarteng J, Wuni A, Akabanda F, Jespersen L (2018) Prevalence and characteristics of Listeria monocytogenes isolates in raw milk, heated milk and nunu, a spontaneously fermented milk beverage, in Ghana. Beverages 4(2):1–10. https://doi.org/10.3390/beverages4020040

    Article  CAS  Google Scholar 

  33. Kevenk TO, Terzi Gulel G (2016) Prevalence, antimicrobial resistance and serotype distribution of Listeria monocytogenes isolated from raw milk and dairy products. J Food Saf 36(1):11–18. https://doi.org/10.1111/jfs.12208

    Article  CAS  Google Scholar 

  34. Jemmi T, Stephan R (2006) Listeria monocytogenes: food-borne pathogen and hygiene indicator. Rev Sci Tech 25(2):571–580

    Article  CAS  PubMed  Google Scholar 

  35. Helwigh B, Korsgaard H, Chriél M (2009) European Food Safety Authority (EFSA). The community summary report on food‐borne outbreaks in the European Union in 2007. EFSA J 7(5). https://doi.org/10.2903/j.efsa.2009.271r

  36. Pagotto F, Ng LK, Clark C, Farber J, Network CPHL (2006) Canadian listeriosis reference service. Foodborne Pathog Dis 3(1):132–137. https://doi.org/10.1089/fpd.2006.3.132

    Article  PubMed  Google Scholar 

  37. Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9(10):1236–1243. https://doi.org/10.1016/j.micinf.2007.05.011

    Article  PubMed  Google Scholar 

  38. Gilmour MW, Graham M, Van Domselaar G, Tyler S, Kent H, Trout-Yakel KM, Larios O, Allen V, Lee B, Nadon C (2010) High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11(1):1–15

    Article  Google Scholar 

  39. Espinosa- Mata EE, Mejía L, Villacís JE, Alban V, Zapata S (2022) Detection and genotyping of Listeria monocytogenes in artisanal soft cheeses from Ecuador. Rev Argent Microbiol 54(1):101–110. https://doi.org/10.1016/j.ram.2021.02.013

    Article  Google Scholar 

  40. Vit M, Olejnik R, Dlhý J, Karpíšková R, Cástková J, Príkazský V, Príkazská M, Beneš C, Petráš P (2007) Outbreak of listeriosis in the Czech Republic, late 2006–preliminary report. Wkly Release (1997–2007) 12(6):3132. https://doi.org/10.2807/esw.12.06.03132-en

    Article  Google Scholar 

  41. Koch J, Dworak R, Prager R, Becker B, Brockmann S, Wicke A, Wichmann-Schauer H, Hof H, Werber D, Stark K (2010) Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006–2007. Foodborne Pathog Dis 7(12):1581–1584. https://doi.org/10.1089/fpd.2010.0631

    Article  PubMed  Google Scholar 

  42. Jackson KA, Biggerstaff M, Tobin-D’Angelo M, Sweat D, Klos R, Nosari J, Garrison O, Boothe E, Saathoff-Huber L, Hainstock L, Fagan RP (2011) Multistate outbreak of Listeria monocytogenes associated with Mexican-style cheese made from pasteurized milk among pregnant, Hispanic women. J Food Prot 74(6):949–953. https://doi.org/10.4315/0362-028X.JFP-10-536

    Article  CAS  PubMed  Google Scholar 

  43. Jensen A, Gerner-Smidt P, Frederiksen W (1995) Risk factors of listeriosis in Denmark 1989–1990. Scand J Infect Dis 157(12):1674–1678. https://doi.org/10.3109/00365549409011781

    Article  CAS  Google Scholar 

  44. MacDonald PD, Whitwam RE, Boggs JD, MacCormack JN, Anderson KL, Reardon JW, Saah JR, Graves LM, Hunter SB, Sobel J (2005) Outbreak of listeriosis among Mexican immigrants as a result of consumption of illicitly produced Mexican-style cheese. Clin Infect Dis 40(5):677–682. https://doi.org/10.1086/427803

    Article  PubMed  Google Scholar 

  45. Smith B (2012) Listeriosis in the Rio Grande Valley 2003–2008. Available at: Untitled-United States-Mexico Border Health Commission. Last accessed April 2nd

  46. Makino SI, Kawamoto K, Takeshi K, Okada Y, Yamasaki M, Yamamoto S, Igimi S (2005) An outbreak of food-borne listeriosis due to cheese in Japan, during 2001. Int J Food Microbiol 104(2):189–196. https://doi.org/10.1016/j.ijfoodmicro.2005.02.009

    Article  PubMed  Google Scholar 

  47. Lyytikäinen O, Nakari UM, Lukinmaa S, Kela E, Minh NNT, Siitonen A (2006) Surveillance of listeriosis in Finland during 1995–2004. Eurosurveillance 11(6):5–6. https://doi.org/10.2807/esm.11.06.00630-en

    Article  PubMed  Google Scholar 

  48. Schwartz B, Hexter D, Broome CV, Hightower AW, Hirschhorn RB, Porter JD, Hayes PS, Bibb WF, Lorber B, Faris DG (1989) Investigation of an outbreak of listeriosis: new hypotheses for the etiology of epidemic Listeria monocytogenes infections. J Infect Dis 159(4):680–685. https://doi.org/10.1093/infdis/159.4.680

    Article  CAS  PubMed  Google Scholar 

  49. McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O’Connor KA, Cosgrove S, Gossack JP, Parachini SS, Jain NS, Ettestad P, Ibraheem M (2013) Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med 369(10):944–953. https://doi.org/10.1056/NEJMoa1215837

    Article  CAS  PubMed  Google Scholar 

  50. Loo KY, Letchumanan V, Dhanoa A, Law JWF, Pusparajah P, Goh BH, Ser HL, Wong SH, Ab Mutalib NS, Chan KG, Lee LH (2020) Exploring the pathogenesis, clinical characteristics and therapeutic regimens of Listeria monocytogenes. Microbiology 3:1–13. https://doi.org/10.31080/ASMI.2020.03.0531

    Article  Google Scholar 

  51. Paudyal R, Barnes RH, Karatzas KAG (2018) A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes. Food Microbiol 69:96–104. https://doi.org/10.1016/j.fm.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  52. Cheng C, Dong Z, Han X, Sun J, Wang H, Jiang L, Yang Y, Ma T, Chen Z, Yu J, Fang W (2017) Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. Front Microbiol 8:1–12. https://doi.org/10.3389/fmicb.2017.00145

    Article  Google Scholar 

  53. Roberts BN, Chakravarty D, Gardner JC III, Ricke SC, Donaldson JR (2020) Listeria monocytogenes response to anaerobic environments. Pathogens 9(3):1–9. https://doi.org/10.3390/pathogens9030210

    Article  CAS  Google Scholar 

  54. Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Gyaltshen Y, Fontana E, Taur Y, Leiner IM, Pamer EG (2017) Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med 214(7):1973–1989. https://doi.org/10.1084/jem.20170495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bai X, Liu D, Xu L, Tenguria S, Drolia R, Gallina NL, Cox AD, Koo OK, Bhunia AK (2021) Biofilm-isolated Listeria monocytogenes exhibits reduced systemic dissemination at the early (12–24 h) stage of infection in a mouse model. npj Biofilms Microbiomes 7(1):1–16. https://doi.org/10.1038/s41522-021-00189-5

    Article  CAS  Google Scholar 

  56. Drolia R, Amalaradjou MAR, Ryan V, Tenguria S, Liu D, Bai X, Xu L, Singh AK, Cox AD, Bernal-Crespo V, Schaber JA (2020) Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun 11(1):1–23. https://doi.org/10.1038/s41467-020-20200-5

    Article  CAS  Google Scholar 

  57. Bou Ghanem EN, Jones GS, Myers-Morales T, Patil PD, Hidayatullah AN, D’Orazio SE (2012) InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. PLoS Pathog 8(11):1–15. https://doi.org/10.1371/journal.ppat.1003015

    Article  CAS  Google Scholar 

  58. Ortega FE, Rengarajan M, Chavez N, Radhakrishnan P, Gloerich M, Bianchini J, Siemers K, Luckett WS, Lauer P, Nelson WJ, Theriot JA (2017) Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells. Mol Biol Cell 28(22):2945–2957. https://doi.org/10.1091/mbc.e16-12-0851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phelps CC, Vadia S, Arnett E, Tan Y, Zhang X, Pathak-Sharma S, Gavrilin MA, Seveau S (2018) Relative roles of listeriolysin O, InlA, and InlB in Listeria monocytogenes uptake by host cells. Infect Immun 86(10):1–16. https://doi.org/10.1128/IAI.00555-18

    Article  Google Scholar 

  60. Pägelow D, Chhatbar C, Beineke A, Liu X, Nerlich A, van Vorst K, Rohde M, Kalinke U, Förster R, Halle S, Valentin-Weigand P (2018) The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat Commun 9(1):1–13. https://doi.org/10.1038/s41467-018-06668-2

    Article  CAS  Google Scholar 

  61. EFSA Panel on Biological Hazards (BIOHAZ), Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Girones R, Herman L, Koutsoumanis K, Nørrung B (2018) Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J 16(1):e05134. https://doi.org/10.2903/j.efsa.2018.5134

    Article  Google Scholar 

  62. Quereda JJ, Leclercq A, Moura A, Vales G, Gómez-Martín Á, García-Muñoz Á, Thouvenot P, Tessaud-Rita N, Bracq-Dieye H, Lecuit M (2020) Listeria valentina sp. nov., isolated from a water trough and the faeces of healthy sheep. Int J Syst Evol Microbiol 70(11):5868–5879. https://doi.org/10.1099/ijsem.0.004494

    Article  CAS  PubMed  Google Scholar 

  63. Wolfe B, Wiepz GJ, Schotzko M, Bondarenko GI, Durning M, Simmons HA, Mejia A, Faith NG, Sampene E, Suresh M, Kathariou S (2017) Acute fetal demise with first trimester maternal infection resulting from Listeria monocytogenes in a nonhuman primate model. MBio 8(1):1–10. https://doi.org/10.1128/mBio.01938-16

    Article  Google Scholar 

  64. Aoshi T, Carrero JA, Konjufca V, Koide Y, Unanue ER, Miller MJ (2009) The cellular niche of Listeria monocytogenes infection changes rapidly in the spleen. Eur J Immunol 39(2):417–425. https://doi.org/10.1002/eji.200838718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhat SA, Willayat MM, Roy SS, Bhat MA, Shah SN, Ahmed A, Maqbool S, Ganayi BA (2013) Isolation, molecular detection and antibiogram of Listeria monocytogenes from human clinical cases and fish of Kashmir, India. Comp Clin Pathol 22(4):661–665. https://doi.org/10.1007/s00580-012-1462-1

    Article  CAS  Google Scholar 

  66. Cone LA, Leung MM, Byrd RG, Annunziata GM, Lam RY, Herman BK (2003) Multiple cerebral abscesses because of Listeria monocytogenes: three case reports and a literature review of supratentorial listerial brain abscess (es). Surg Neurol 59(4):320–328. https://doi.org/10.1016/S0090-3019(03)00056-9

    Article  PubMed  Google Scholar 

  67. Wing EJ, Gregory SH (2002) Listeria monocytogenes: clinical and experimental update. J Infect Dis 185(Supplement 1):S18–S24. https://doi.org/10.1086/338465

    Article  CAS  PubMed  Google Scholar 

  68. Salazar JK, Wu Z, Yang W, Freitag NE, Tortorello ML, Wang H, Zhang W (2013) Roles of a novel Crp/Fnr family transcription factor Lmo0753 in soil survival, biofilm production and surface attachment to fresh produce of Listeria monocytogenes. PLoS One 8(9):1–8. https://doi.org/10.1371/journal.pone.0075736

    Article  CAS  Google Scholar 

  69. Pérez-Trallero E, Zigorraga C, Artieda J, Alkorta M, Marimón JM (2014) Two outbreaks of Listeria monocytogenes infection, Northern Spain. Emerg Infect Dis 20(12):2155–2157. https://doi.org/10.3201/eid2012.140993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aureli P, Fiorucci GC, Caroli D, Marchiaro G, Novara O, Leone L, Salmaso S (2000) An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med 342(17):1236–1241. https://doi.org/10.1056/NEJM200004273421702

    Article  CAS  PubMed  Google Scholar 

  71. Lin CM, Takeuchi K, Zhang L, Dohm CB, Meyer JD, Hall PA, Doyle MP (2006) Cross-contamination between processing equipment and deli meats by Listeria monocytogenes. J Food Prot 69(1):71–79. https://doi.org/10.4315/0362-028X-69.1.71

    Article  PubMed  Google Scholar 

  72. Proctor ME, Brosch R, Mellen JW, Garrett LA, Kaspar CW, Luchansky JB (1995) Use of pulsed-field gel electrophoresis to link sporadic cases of invasive listeriosis with recalled chocolate milk. Appl Environ Microbiol 61(8):3177–3179. https://doi.org/10.1128/aem.61.8.3177-3179.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tham W, Ericsson H, Loncarevic S, Unnerstad H, Danielsson-Tham ML (2000) Lessons from an outbreak of listeriosis related to vacuum-packed gravad and cold-smoked fish. Int J Food Microbiol 62(3):173–175. https://doi.org/10.1016/S0168-1605(00)00332-9

    Article  CAS  PubMed  Google Scholar 

  74. Thévenot D, Dernburg A, Vernozy-Rozand C (2006) An updated review of Listeria monocytogenes in the pork meat industry and its products. J Appl Microbiol 101(1):7–17. https://doi.org/10.1111/j.1365-2672.2006.02962.x

    Article  PubMed  Google Scholar 

  75. Amato E, Filipello V, Gori M, Lomonaco S, Losio MN, Parisi A, Huedo P, Knabel SJ, Pontello M (2017) Identification of a major Listeria monocytogenes outbreak clone linked to soft cheese in Northern Italy–2009-2011. BMC Infect Dis 17(1):1–7. https://doi.org/10.1186/s12879-017-2441-6

    Article  CAS  Google Scholar 

  76. Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE (2013) Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg Infect Dis 19(1):1–9. https://doi.org/10.3201/eid1901.120393

    Article  PubMed  PubMed Central  Google Scholar 

  77. Self JL, Conrad A, Stroika S, Jackson A, Whitlock L, Jackson KA, Beal J, Wellman A, Fatica MK, Bidol S, Huth PP (2019) Multistate outbreak of listeriosis associated with packaged leafy green salads, United States and Canada, 2015–2016. Emerg Infect Dis 25(8):1461. https://doi.org/10.3201/eid2508.180761

    Article  PubMed  PubMed Central  Google Scholar 

  78. Farber JM, Kozak GK, Duquette S (2011) Changing regulation: Canada’s new thinking on Listeria. Food Control 22(9):1506–1509. https://doi.org/10.1016/j.foodcont.2010.07.019

    Article  Google Scholar 

  79. Muthulakshmi K, Uma C, Sivagurunathan P, Satheeshkumar S (2018) Occurrence of Listeria monocytogenes in milk and milk products. Int J Recent Res Life Sci 7(4):1572–1574

    Google Scholar 

  80. Elafify M, Elabbasy MT, Mohamed RS, Mohamed EA, Saad Eldin WF, Darwish WS, Eldrehmy EH, Shata RR (2022) Prevalence of multidrug-resistant Listeria monocytogenes in dairy products with reduction trials using rosmarinic acid, ascorbic acid, clove, and thyme essential oils. J Food Qual 1–12. https://doi.org/10.1155/2022/9696927

  81. Sepahvand F, Rashidian E, Jaydari A, Rahimi H (2022) Prevalence of Listeria monocytogenes in raw milk of healthy sheep and goats. Vet Med Int 1–5. https://doi.org/10.1155/2022/3206172

  82. Mary MS, Shrinithivihahshini ND (2017) Pervasiveness of Listeria monocytogenes in milk and dairy products. J Food: Microbiol, Saf Hyg 2(125):2476–2059. https://doi.org/10.4172/2476-2059.1000125

    Article  Google Scholar 

  83. Elsayed MM, Elkenany RM, Zakaria AI, Badawy BM (2022) Epidemiological study on Listeria monocytogenes in Egyptian dairy cattle farms’ insights into genetic diversity of multi-antibiotic-resistant strains by ERIC-PCR. Environ Sci Pollut Res 1–19. https://doi.org/10.1007/s11356-022-19495-2

  84. Seyoum ET, Woldetsadik DA, Mekonen TK, Gezahegn HA, Gebreyes WA (2015) Prevalence of Listeria monocytogenes in raw bovine milk and milk products from central highlands of Ethiopia. J Infect Dev Countries 9(11):1204–1209. https://doi.org/10.3855/jidc.6211

    Article  CAS  Google Scholar 

  85. Hassani S, Moosavy MH, Gharajalar SN, Khatibi SA, Hajibemani A, Barabadi Z (2022) High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. Sci Rep 12(1):1–10. https://doi.org/10.1038/s41598-022-07845-6

    Article  CAS  Google Scholar 

  86. Shahbazi AM, Rashedi M, Sohrabi R (2013) Comparative contamination of Listeria monocytogenes in traditional dairy products in Esfahan Province, Iran. Afr J Microbiol Res 7(16):1522–1526. https://doi.org/10.5897/AJMR12.1290

    Article  CAS  Google Scholar 

  87. Mohamad EA, Amin J, Nemat S, Heidar R (2022) Prevalence of Listeria monocytogenes in raw milk of the healthy cattle in Lorestan Province (Iran) by PCR. J Adv Biomed Sci 12(2):171–176. https://doi.org/10.18502/jabs.v12i2.9881

    Article  CAS  Google Scholar 

  88. Mansouri-Najand L, Kianpour M, Sami M, Jajarmi M (2015) Prevalence of Listeria monocytogenes in raw milk in Kerman, Iran. Vet Res Forum 6(3):223–226

    PubMed  PubMed Central  Google Scholar 

  89. Girma Y, Abebe B (2018) Isolation, identification and antimicrobial susceptibility of Listeria species from raw bovine milk in Debre-Birhan Town, Ethiopia. J Zoonotic Dis Public Health 2(1):1–7

    Google Scholar 

  90. Elshinaway S, Meshref A, Zeinhom M, Hafez D (2016) Incidence of Listeria species in some dairy products in beni-suef governorate. Assiut Vet Med J 63(152):5–13. https://doi.org/10.21608/AVMJ.2016.169210

    Article  Google Scholar 

  91. Studenica A, Märtlbauer E, Mulliqi-Osmani G (2022) The prevalence of bacterial contaminants in artisanal cheese sold in informal markets. The case of Kosovo. Food Sci Appl Biotechnol 5(1):77–86. https://doi.org/10.30721/fsab2022.v5.i1.168

    Article  Google Scholar 

  92. Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X (2021) Listeria monocytogenes contamination characteristics in two ready-to-eat meat plants from 2019 to 2020 in Shanghai. Front Microbiol 12:1–9. https://doi.org/10.3389/fmicb.2021.729114

    Article  Google Scholar 

  93. El-Demerdash AS, Raslan MT (2019) Molecular characterization of Listeria monocytogenes isolated from different animal-origin food items from urban and rural areas. Adv Anim Vet Sci 7(s2):51–56. https://doi.org/10.17582/journal.aavs/2019/7.s2.51.56

    Article  Google Scholar 

  94. Ghadiri Hakim H, Jamali Behnam Y, Hashemi M, Miri Disfani A, Torbati Moghaddam MR, Afshari A (2021) Prevalence of pathogenic microorganisms in traditional dairy products of Mashhad, Iran. J Human Environ Health Promot 7(3):152–158. https://doi.org/10.52547/jhehp.7.3.152

    Article  CAS  Google Scholar 

  95. Gómez D, Iguácel LP, Rota MC, Carramiñana JJ, Ariño A, Yangüela J (2015) Occurrence of Listeria monocytogenes in ready-to-eat meat products and meat processing plants in Spain. Foods 4(3):271–282. https://doi.org/10.3390/foods4030271

    Article  PubMed  PubMed Central  Google Scholar 

  96. Panera-Martínez S, Rodríguez-Melcón C, Serrano-Galán V, Alonso-Calleja C, Capita R (2022) Prevalence, quantification and antibiotic resistance of Listeria monocytogenes in poultry preparations. Food Control 135:1–12. https://doi.org/10.1016/j.foodcont.2021.108608

    Article  CAS  Google Scholar 

  97. Oswaldi V, Dzierzon J, Thieme S, Merle R, Meemken D (2021) Slaughter pigs as carrier of Listeria monocytogenes in Germany. J Consum Prot Food Saf 16(2):109–115. https://doi.org/10.1007/s00003-021-01322-4

    Article  Google Scholar 

  98. Goudar V, Kanthesh BM, Prasad N (2021) Isolation and identification of Listeria monocytogenes in Bangalore City from various food samples. Biomed Pharmacol J 14(4):2271–2276. https://doi.org/10.13005/bpj/2327

    Article  CAS  Google Scholar 

  99. Şanlibaba P, Tezel BU, Cakmak GA, Keskin R, Akcelik M (2020) Occurrence of Listeria spp. and antibiotic resistance profiles of Listeria monocytogenes from raw meat at retail in Turkey. Ital J Food Sci 32(1):234–250

    Google Scholar 

  100. Maktabi S, Pourmehdi M, Zarei M, Moalemian R (2015) Occurrence and antibiotic resistance of Listeria monocytogenes in retail minced beef distributed in Ahvaz, South-West of Iran. J Food Qual Hazards Control 2(3):101–106

    CAS  Google Scholar 

  101. Al-Nabulsi AA, Osaili TM, Awad AA, Olaimat AN, Shaker RR, Holley RA (2015) Occurrence and antibiotic susceptibility of Listeria monocytogenes isolated from raw and processed meat products in Amman, Jordan. CyTA-J Food 13(3):346–352. https://doi.org/10.1080/19476337.2014.982191

    Article  CAS  Google Scholar 

  102. Islam MS, Husna AA, Islam MA, Khatun MM (2016) Prevalence of Listeria monocytogenes in beef, chevon and chicken in Bangladesh. Am J Food Sci Health 2(4):39–44

    Google Scholar 

  103. Phung T, Tran T, Pham D, To A, Le H (2020) Occurrence and molecular characteristics of Listeria monocytogenes isolated from ready-to-eat meats in Hanoi, Vietnam. Ital J Food Saf 9(3):98–103. https://doi.org/10.4081/ijfs.2020.8772

    Article  CAS  Google Scholar 

  104. Nemati V, Khomeiri M, Sadeghi Mahoonak A, Moayedi A (2020) Prevalence and antibiotic susceptibility of Listeria monocytogenes isolated from retail ready-to-eat meat products in Gorgan, Iran. Nutr Food Sci Res 7(1):41–46. https://doi.org/10.29252/nfsr.7.1.41

    Article  Google Scholar 

  105. Dunka HI, Bello M, Lawan MK (2021) Prevalence and Antibiogram of Listeria monocytogenes contamination of liver, spleen, ruminal content and effluent in Jos, Nigeria. J Vet Med Anim Sci 4(1):1–8

    Google Scholar 

  106. Willis C, McLauchlin J, Aird H, Amar C, Barker C, Dallman T, Elviss N, Lai S, Sadler-Reeves L (2020) Occurrence of Listeria and Escherichia coli in frozen fruit and vegetables collected from retail and catering premises in England 2018–2019. Int J Food Microbiol 334:1–12. https://doi.org/10.1016/j.ijfoodmicro.2020.108849

    Article  CAS  Google Scholar 

  107. Sy KV, Murray MB, Harrison MD, Beuchat LR (2005) Evaluation of gaseous chlorine dioxide as a sanitizer for killing Salmonella, Escherichia coli O157: H7, Listeria monocytogenes, and yeasts and molds on fresh and fresh-cut produce. J Food Prot 68(6):1176–1187. https://doi.org/10.4315/0362-028X-68.6.1176

    Article  CAS  PubMed  Google Scholar 

  108. Ding T, Iwahori JI, Kasuga F, Wang J, Forghani F, Park MS, Oh DH (2013) Risk assessment for Listeria monocytogenes on lettuce from farm to table in Korea. Food Control 30(1):190–199. https://doi.org/10.1016/j.foodcont.2012.07.014

    Article  Google Scholar 

  109. Ponniah J, Robin T, Paie MS, Radu S, Ghazali FM, Kqueen CY, Nishibuchi M, Nakaguchi Y, Malakar PK (2010) Listeria monocytogenes in raw salad vegetables sold at retail level in Malaysia. Food Control 21(5):774–778. https://doi.org/10.1016/j.foodcont.2009.09.008

    Article  CAS  Google Scholar 

  110. Ruiz-Cruz S, Acedo-Félix E, Díaz-Cinco M, Islas-Osuna MA, González-Aguilar GA (2007) Efficacy of sanitizers in reducing Escherichia coli O157: H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control 18(11):1383–1390. https://doi.org/10.1016/j.foodcont.2006.09.008

    Article  CAS  Google Scholar 

  111. Althaus D, Hofer E, Corti S, Julmi A, Stephan R (2012) Bacteriological survey of ready-to-eat lettuce, fresh-cut fruit, and sprouts collected from the Swiss market. J Food Prot 75(7):1338–1341. https://doi.org/10.4315/0362-028X.JFP-12-022

    Article  CAS  PubMed  Google Scholar 

  112. Hossein J, Mohammadjavad P, Chung YL, Won FW (2013) Prevalence of Listeria species and Listeria monocytogenes serotypes in ready mayonnaise salads and salad vegetables in Iran. Afr J Microbiol Res 7(19):1903–1906. https://doi.org/10.5897/AJMR2013.5658

    Article  CAS  Google Scholar 

  113. Gómez-Govea M, Solís-Soto L, Heredia N, García S, Moreno G, Tovar O, Isunza G (2012) Analysis of microbial contamination levels of fruits and vegetables at retail in Monterrey, Mexico. J Food Agric Environ 10(1):152–156

    Google Scholar 

  114. Easa SMH (2010) Microorganisms found in fast and traditional fast food. J Am Sci 6(10):515–531

    Google Scholar 

  115. Skalina L, Nikolajeva V (2010) Growth potential of Listeria monocytogenes strains in mixed ready-to-eat salads. Int J Food Microbiol 144(2):317–321. https://doi.org/10.1016/j.ijfoodmicro.2010.10.001

    Article  PubMed  Google Scholar 

  116. Ghosh P, Zhou Y, Richardson Q, Higgins DE (2019) Characterization of the pathogenesis and immune response to Listeria monocytogenes strains isolated from a sustained national outbreak. Sci Rep 9(1):1–12. https://doi.org/10.1038/s41598-019-56028-3

    Article  CAS  Google Scholar 

  117. Gaul LK, Farag NH, Shim T, Kingsley MA, Silk BJ, Hyytia-Trees E (2013) Hospital-acquired listeriosis outbreak caused by contaminated diced celery—Texas, 2010. Clin Infect Dis 56(1):20–26. https://doi.org/10.1093/cid/cis817

    Article  PubMed  Google Scholar 

  118. Cuite CL, Senger-Mersich A, McWilliams R, Hallman WK (2012) Public perceptions of the deadly 2011 outbreak of Listeria moncytogenes in cantaloupe. Soc Risk Anal. https://doi.org/10.7282/t3-9h79-vh03

    Article  Google Scholar 

  119. Danyluk MD, Friedrich LM, Schaffner DW (2014) Modeling the growth of Listeria monocytogenes on cut cantaloupe, honeydew and watermelon. Food Microbiol 38:52–55. https://doi.org/10.1016/j.fm.2013.08.001

    Article  PubMed  Google Scholar 

  120. Angelo KM, Conrad AR, Saupe A, Dragoo H, West N, Sorenson A, Barnes A, Doyle M, Beal J, Jackson KA, Stroika S (2017) Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014–2015. Epidemiol Infect 145(5):848–856. https://doi.org/10.1017/S095026881600308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Simonetti T, Peter K, Chen Y, Jin Q, Zhang G, LaBorde LF, Macarisin D (2021) Prevalence and distribution of Listeria monocytogenes in three commercial tree fruit packinghouses. Front Microbiol 12:1–12. https://doi.org/10.3389/fmicb.2021.652708

    Article  Google Scholar 

  122. Buchanan RL, Gorris LG, Hayman MM, Jackson TC, Whiting RC (2018) A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75:1–13. https://doi.org/10.1016/j.foodcont.2018.01.004

    Article  Google Scholar 

  123. Gillespie IA, Mook P, Little CL, Grant K, Adak GK (2010) Listeria monocytogenes infection in the over-60s in England between 2005 and 2008: a retrospective case–control study utilizing market research panel data. Foodborne Pathog Dis 7(11):1373–1379. https://doi.org/10.1089/fpd.2010.0568

    Article  PubMed  Google Scholar 

  124. McLauchlin J (1990) Human listeriosis in Britain, 1967–85, a summary of 722 cases: 1. Listeriosis during pregnancy and in the newborn. Epidemiol Infect 104(2):181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Owusu-Kwarteng J, Akabanda F, Agyei D, Jespersen L (2020) Microbial safety of milk production and fermented dairy products in Africa. Microorganisms 8(5):752. https://doi.org/10.3390/microorganisms8050752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Martin NH, Boor KJ, Wiedmann M (2018) Symposium review: effect of post-pasteurization contamination on fluid milk quality. J Dairy Sci 101(1):861–870. https://doi.org/10.3168/jds.2017-13339

    Article  CAS  PubMed  Google Scholar 

  127. Winter P, Schilcher F, Bago Z, Schoder D, Egerbacher M, Baumgartner W, Wagner M (2004) Clinical and histopathological aspects of naturally occurring mastitis caused by Listeria monocytogenes in cattle and ewes. J Vet Med Ser B 51(4):176–179. https://doi.org/10.1111/j.1439-0450.2004.00751.x

    Article  CAS  Google Scholar 

  128. Haekkinen L, Lindjaerv R, Ausleete J, Klaassen E (2001) Isolation of Listeria monocytogenes from raw milk. Vet Med 2001 (Estonia) 116–119

  129. Konosonoka IH, Jemeljanovs A, Osmane B, Ikauniece D, Gulbe G (2012) Incidence of Listeria spp. in dairy cows feed and raw milk in Latvia. Int Scholar Res Not 1-5. https://doi.org/10.5402/2012/435187

  130. Abd El Tawab AA, Maarouf AA, Mahdy ZA (2015) Bacteriological and molecular studies of Listeria species in milk and milk products at El-Kaliobia Governorate. Benha Vet Med J 29(2):170–181. https://doi.org/10.21608/BVMJ.2015.31698

    Article  Google Scholar 

  131. Manuelo C, Mwinjiro A, Masangwi D, Bandawe G, Madanitsa M, Kazembe Y, Kamaliza M, Ntenda PAM, Mandala W, Chigwechokha P, Mtewa AG (2021) Phenotypic characterisation of Listeria monocytogenes in cow milk from three catchment areas of Goliati Area in Thyolo District, Malawi. Arch Community Med Public Health 7(2):126–132. https://doi.org/10.17352/2455-5479.000151

    Article  Google Scholar 

  132. Lee SHI, Cappato LP, Guimarães JT, Balthazar CF, Rocha RS, Franco LT, da Cruz AG, Corassin CH, de Oliveira CAF (2019) Listeria monocytogenes in milk: occurrence and recent advances in methods for inactivation. Beverages 5(1):1–14. https://doi.org/10.3390/beverages5010014

    Article  CAS  Google Scholar 

  133. Martín B, Perich A, Gómez D, Yangüela J, Rodríguez A, Garriga M, Aymerich T (2014) Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiol 44:119–127. https://doi.org/10.1016/j.fm.2014.05.014

    Article  PubMed  Google Scholar 

  134. Chen M, Cheng J, Zhang J, Chen Y, Zeng H, Xue L, Lei T, Pang R, Wu S, Wu H, Zhang S (2019) Isolation, potential virulence, and population diversity of Listeria monocytogenes from meat and meat products in China. Front Microbiol 10:1–10. https://doi.org/10.3389/fmicb.2019.00946

    Article  Google Scholar 

  135. Kureljušić J, Rokvić N, Jezdimirović N, Kureljušić B, Pisinov B, Karabasil N (2017) Isolation and detection of Listeria monocytogenes in poultry meat by standard culture methods and PCR. In IOP Conference Series: Earth and Environmental Science (Vol. 85, No. 1, p. 012069). IOP Publishing. https://doi.org/10.1088/1755-1315/85/1/012069

  136. Ahmed SSTS, Tayeb B, Ameen AM, Merza SM, Sharif Y (2017) Isolation and molecular detection of Listeria monocytogenes in minced meat, frozen chicken and cheese in Duhok province, Kurdistan region of Iraq. J Food: Microbiol, Saf Hyg 2(1):1–4. https://doi.org/10.4172/2476-2059.1000118

    Article  Google Scholar 

  137. Alsheikh ADI, Mohammed GE, Abdalla MA (2013) Isolation and identification of Listeria monocytogenes from retail broiler chicken ready to eat meat products in Sudan. Int J Anim Vet Adv 5(1):9–14

    Article  Google Scholar 

  138. Gebretsadik S, Kassa T, Alemayehu H, Huruy K, Kebede N (2011) Isolation and characterization of Listeria monocytogenes and other Listeria species in foods of animal origin in Addis Ababa, Ethiopia. J Infect Public Health 4(1):22–29. https://doi.org/10.1016/j.jiph.2010.10.002

    Article  PubMed  Google Scholar 

  139. Kumar VBN, Fairoze N, Madhavaprasad CB, Karabasanavar N, Kotresh AM, Nadoor P, Prashant S, Shilpa AG, Barbuddhe SB, Kurkure N, Chaudhary S (2016) Molecular characterization and antibiogram of Listeria monocytogenes isolated from chicken and mutton of retail markets. J Microbiol Infect Dis 6(2):65–68. https://doi.org/10.5799/ahinjs.02.2016.02.0218

    Article  Google Scholar 

  140. Wang GH, Yan KT, Feng XM, Chen SM, Lui AP, Kokubo Y (1992) Isolation and identification of Listeria monocytogenes from retail meats in Beijing. J Food Prot 55(1):56–58. https://doi.org/10.4315/0362-028X-55.1.56

    Article  PubMed  Google Scholar 

  141. Loncarevic S, Økland M, Sehic E, Norli HS, Johansson T (2008) Validation of NMKL method no. 136 - Listeria monocytogenes, detection and enumeration in foods and feed. Int J Food Microbiol 124(2):154–163. https://doi.org/10.1016/j.ijfoodmicro.2008.03.032

    Article  CAS  PubMed  Google Scholar 

  142. Fraser JA, Sperber WH (1988) Rapid detection of Listeria spp. in food and environmental samples by esculin hydrolysis. J Food Prot 51(10):762–765. https://doi.org/10.4315/0362-028X-51.10.762

    Article  PubMed  Google Scholar 

  143. Van Netten P, Perales I, Van de Moosdijk A, Curtis GDW, Mossel DAA (1989) Liquid and solid selective differential media for the detection and enumeration of L. monocytogenes and other Listeria spp. Int J Food Microbiol 8(4):299–316. https://doi.org/10.1016/0168-1605(89)90001-9

    Article  PubMed  Google Scholar 

  144. Curtis GDW, Mitchell RG, King AF, Griffin EJ (1989) A selective differential medium for the isolation of Listeria monocytogenes. Lett Appl Microbiol 8(3):95–98. https://doi.org/10.1111/j.1472-765X.1989.tb00231.x

    Article  Google Scholar 

  145. Liu A, Shen L, Zeng Z, Sun M, Liu Y, Liu S, Li C, Wang X (2018) A minireview of the methods for Listeria monocytogenes detection. Food Anal Methods 11(1):215–223. https://doi.org/10.1007/s12161-017-0991-2

    Article  Google Scholar 

  146. Dwivedi HP, Jaykus LA (2011) Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol 37(1):40–63. https://doi.org/10.3109/1040841X.2010.506430

    Article  CAS  PubMed  Google Scholar 

  147. Jadhav S, Bhave M, Palombo EA (2012) Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Methods 88(3):327–341. https://doi.org/10.1016/j.mimet.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  148. Law JWF, Ab Mutalib NS, Chan KG, Lee LH (2015) An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Front Microbiol 6:1227. https://doi.org/10.3389/fmicb.2015.01227

    Article  PubMed  PubMed Central  Google Scholar 

  149. Adhikari P, Florien N, Gupta S, Kaushal A (2023). Recent Adv Detect Listeria Monocytogenes. https://doi.org/10.5772/intechopen.109948

    Article  Google Scholar 

  150. Heo EJ, Song BR, Park HJ, Kim YJ, Moon JS, Wee SH, Kim JS, Yoon Y (2014) Rapid detection of Listeria monocytogenes by real-time PCR in processed meat and dairy products. J Food Prot 77(3):453–458. https://doi.org/10.4315/0362-028X.JFP-13-318

    Article  PubMed  Google Scholar 

  151. D’agostino M, Wagner M, Vazquez-Boland JA, Kuchta T, Karpiskova R, Hoorfar J, Novella S, Scortti M, Ellison J, Murray A, Fernandes I (2004) A validated PCR-based method to detect Listeria monocytogenes using raw milk as a food model—towards an international standard. J Food Prot 67(8):1646–1655. https://doi.org/10.4315/0362-028x-67.8.1646

    Article  CAS  PubMed  Google Scholar 

  152. Li F, Ye Q, Chen M, Zhang J, Xue L, Wang J, Wu S, Zeng H, Gu Q, Zhang Y, Wei X (2021) Multiplex PCR for the identification of pathogenic Listeria in Flammulina velutipes plant based on novel specific targets revealed by pan-genome analysis. Front Microbiol 11:634255. https://doi.org/10.3389/fmicb.2020.634255

    Article  PubMed  PubMed Central  Google Scholar 

  153. Azinheiro S, Ghimire D, Carvalho J, Prado M, Garrido-Maestu A (2022) Next-day detection of viable Listeria monocytogenes by multiplex reverse transcriptase real-time PCR. Food Control 133:108593. https://doi.org/10.1016/j.foodcont.2021.108593

    Article  CAS  Google Scholar 

  154. Rodríguez-Lázaro D, Hernández M, Pla M (2004) Simultaneous quantitative detection of Listeria spp. and Listeria monocytogenes using a duplex real-time PCR-based assay. FEMS Microbiol Lett 233(2):257–267. https://doi.org/10.1111/j.1574-6968.2004.tb09490.x

    Article  PubMed  Google Scholar 

  155. Rossmanith P, Krassnig M, Wagner M, Hein I (2006) Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene. Res Microbiol 157(8):763–771. https://doi.org/10.1016/j.resmic.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  156. Jandaghi H, Ghahramani Seno MM, Farzin HR, Mohsenzadeh M (2020) Rapid quantitative detection of Listeria monocytogenes in chicken using direct and combined enrichment/qPCR method. Iran J Chem Chem Eng 39(3):137–146. https://doi.org/10.30492/IJCCE.2020.35110

    Article  Google Scholar 

  157. Sophian A, Purwaningsih R, Igirisa EPJ, Amirullah ML, Lukita BL, Fitri RA (2021) Detection of Salmonella typhimurium ATCC 14028 and Listeria monocytogenes ATCC 7644 in processed meat products using Real-Time PCR Multiplex Method. Asian J Nat Prod Biochem 19(1):17–20. https://doi.org/10.13057/biofar/f190103

    Article  Google Scholar 

  158. Malakar D, Borah P, Das L, Mathipi V, Sailo CV, Dutta R, Deka NK, Kumar NS (2020) Prevalence and virulent gene profiling of Listeria monocytogenes from fish and meat samples from Aizawl, Mizoram. J Pure Appl Microbiol 14(2):1359–1365. https://doi.org/10.22207/JPAM.14.2.33

    Article  CAS  Google Scholar 

  159. Silva AS, Duarte EA, Oliveira TAD, Evangelista-Barreto NS (2020) Identification of Listeria monocytogenes in cattle meat using biochemical methods and amplification of the hemolysin gene. Anais da Academia Brasileira de Ciências 92. https://doi.org/10.1590/0001-3765202020180557

  160. Samad A, Asmat R, Naeem M, Ali H, Mustafa MZ, Abbas F, Raza J, Asmat MT (2020) Isolation and identification of Listeria monocytogenes from raw vegetables and meat sold in Quetta, Pakistan. Pak J Zool 52(2):817–820. https://doi.org/10.17582/journal.pjz/20190402110434

    Article  CAS  Google Scholar 

  161. Mpundu P, Muma JB, Mukumbuta N, Mukubesa AN, Muleya W, Kapila P, Hang’ombe BM, Munyeme M (2022) Isolation, discrimination, and molecular detection of Listeria species from slaughtered cattle in Namwala District, Zambia. BMC Microbiol 22(1):1–12. https://doi.org/10.1186/s12866-022-02570-6

    Article  Google Scholar 

  162. Kim DH, Chon JW, Kim H, Kim HS, Choi D, Kim YJ, Yim JH, Moon JS, Seo KH (2014) Comparison of culture, conventional and real-time PCR methods for Listeria monocytogenes in foods. Korean J Food Sci Anim Resour 34(5):665–673. https://doi.org/10.5851/kosfa.2014.34.5.665

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bansal NS, McDonell FHY, Smith A, Arnold G, Ibrahim GF (1996) Multiplex PCR assay for the routine detection of Listeria in food. Int J Food Microbiol 33(2–3):293–300. https://doi.org/10.1016/0168-1605(96)01161-0

    Article  CAS  PubMed  Google Scholar 

  164. Nho SW, Abdelhamed H, Reddy S, Karsi A, Lawrence ML (2015) Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR. J Appl Microbiol 119(3):845–852. https://doi.org/10.1111/jam.12876

    Article  CAS  PubMed  Google Scholar 

  165. Alía A, Andrade MJ, Córdoba JJ, Martín I, Rodríguez A (2020) Development of a multiplex real-time PCR to differentiate the four major Listeria monocytogenes serotypes in isolates from meat processing plants. Food Microbiol 87:103367. https://doi.org/10.1016/j.fm.2019.103367

    Article  CAS  PubMed  Google Scholar 

  166. Chen JQ, Healey S, Regan P, Laksanalamai P, Hu Z (2017) PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. Food Sci Human Wellness 6(2):39–59. https://doi.org/10.1016/j.fshw.2017.03.001

    Article  Google Scholar 

  167. Liu P, Mizue H, Fujihara K, Kobayashi H, Kamikado H, Tanaka T, Honjoh KI, Miyamoto T (2012) A new rapid real-time PCR method for detection of Listeria monocytogenes targeting the hlyA gene. Food Sci Technol Res 18(1):47–57. https://doi.org/10.3136/fstr.18.47

    Article  Google Scholar 

  168. Shan X, Zhang Y, Zhang Z, Chen M, Su Y, Yuan Y, Alam MJ, Yan H, Shi L (2012) Rapid detection of food-borne Listeria monocytogenes by real-time quantitative loop-mediated isothermal amplification. Food Sci Biotechnol 21:101–106. https://doi.org/10.1007/s10068-012-0012-6

    Article  CAS  Google Scholar 

  169. Tang MJ, Zhou S, Zhang XY, Pu JH, Ge QL, Tang XJ, Gao YS (2011) Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification. Curr Microbiol 63:511–516. https://doi.org/10.1007/s00284-011-0013-3

    Article  CAS  PubMed  Google Scholar 

  170. Wu R, Liu X, Guo B, Chen F, Wang X (2014) Development of double loop-mediated isothermal amplification to detect Listeria monocytogenes in food. Curr Microbiol 69:839–845. https://doi.org/10.1007/s00284-014-0661-1

    Article  CAS  PubMed  Google Scholar 

  171. Blais BW, Turner G, Sooknanan R, Malek LT (1997) A nucleic acid sequence-based amplification system for detection of Listeria monocytogenes hlyA sequences. Appl Environ Microbiol 63(1):310–313. https://doi.org/10.1128/aem.63.1.310-313.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Severgnini M, Cremonesi P, Consolandi C, De Bellis G, Castiglioni B (2011) Advances in DNA microarray technology for the detection of foodborne pathogens. Food Bioprocess Technol 4(6):936–953. https://doi.org/10.4061/2011/310135

    Article  CAS  Google Scholar 

  173. Letchumanan V, Wong PC, Goh BH, Ming LC, Pusparajah P, Wong SH, Ab Mutalib NS, Lee LH (2018) A review on the characteristics, taxanomy and prevalence of Listeria monocytogenes. Progress Microbes Mol Biol 1(1):1–8. https://doi.org/10.36877/pmmb.a0000007

    Article  Google Scholar 

  174. Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA (2018) Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Compr Rev Food Sci Food Saf 17(5):1277–1292. https://doi.org/10.1111/1541-4337.12387

    Article  PubMed  Google Scholar 

  175. Şanlıbaba P, Tezel BU, Çakmak GA (2018) Prevalence and antibiotic resistance of Listeria monocytogenes isolated from ready-to-eat foods in Turkey. J Food Qual 1–9. https://doi.org/10.1155/2018/7693782

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ramya Ravindhiran: writing-original draft preparation, reviewing, and editing. Karthiga Sivarajan and Jothi Nayaki Sekar: literature search and editing. Rajeswari Murugesan: data collection. Kavitha Dhandapani: conceptualization, reviewing, editing and supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kavitha Dhandapani.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravindhiran, R., Sivarajan, K., Sekar, J.N. et al. Listeria monocytogenes an Emerging Pathogen: a Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. Microb Ecol 86, 2231–2251 (2023). https://doi.org/10.1007/s00248-023-02269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02269-9

Keywords

Navigation