Skip to main content
Log in

Effects of post-weld heat treatments in microstructure, mechanical properties, and corrosion resistance of simulated heat-affected zone of supermartensitic steel UNS S41426

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Supermartensitic stainless steel (SMSS) UNS S41426 is an extra-low carbon steel with 12–13%Cr-5%Ni-2%Mo (%wt.) and microadditions of Ti and V. This material offers an interesting combination of mechanical and corrosion resistance. Although the weldability was improved in relation to conventional martensitic steels, due to the drastic reduction of carbon content, post-weld heat treatments are still necessary to decrease the hardness of the heat affected zone (HAZ). The UNS S41426 is used to manufacture mandrels for chemical products or gas injection in the well in the oil and gas off-shore production. Those mandrels are constructed with forged parts and hot rolled seamless pipes joined by welding. The microstructure, hardness, toughness, and sensitization of simulated HAZ of SMSS UNS S41426 forged and hot rolled were investigated. The effect of single tempering at 650 °C for 5 min and at 620 °C for 1 h, as well as double tempering (670 °C/2 h + 600 °C/2 h), was analyzed. The short duration tempering treatments did not change considerably the microstructure, but provoked an undesirable decrease of toughness. The single tempering for 1 h and the double tempering promoted more important microstructural changes, accompanied by the decrease of hardness and the increase of the degree of sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. IEA (2022) U.S. Energy Information Administration. https://www.eia.gov/. Accessed 15 Mar 2023

  2. Kölblinger AP, Tavares SSM, Della Rovere CA, Pimenta AR (2022) Failure analysis of a flange of superduplex stainless steel by preferential corrosion of ferrite phase. Eng Fail Anal 134:106098. https://doi.org/10.1016/j.engfailanal.2022.106098

    Article  Google Scholar 

  3. Esaklul KA, Ahmed TM (2009) Prevention of failures of high strength fasteners in use in offshore and subsea applications. Eng Fail Anal 16:1195–1202. https://doi.org/10.1016/j.engfailanal.2008.07.012

    Article  Google Scholar 

  4. Alcantar-Modragón N, García-García V, Reyes-Calderón F et al (2021) Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model. Int J Adv Manuf Technol 116:2661–2686. https://doi.org/10.1007/s00170-021-07596-0

    Article  Google Scholar 

  5. Tavares SSM, Pardal JM, Almeida BB et al (2018) Failure of superduplex stainless steel flange due to inadequate microstructure and fabrication process. Eng Fail Anal 84:1–10. https://doi.org/10.1016/j.engfailanal.2017.10.007

    Article  Google Scholar 

  6. Liu T, Zhiyong RW, Xu D, Aung AA (2014) Metallurgical analysis on a cracked super duplex stainless steel flange. J Fail Anal Preven 14:470–477. https://doi.org/10.1007/s11668-014-9832-4

    Article  Google Scholar 

  7. Azevedo CRF, Feller AH (2019) Selected cases of failure analysis and the regulatory agencies in Brazil. Part 2: electric energy and oil. Eng Fail Anal 99:108–125. https://doi.org/10.1016/j.engfailanal.2019.02.006

    Article  Google Scholar 

  8. Tavares SSM, Pardal JM, Noris LF, Diniz MG (2021) Microstructural characterization and non-destructive testing and of welded joints of duplex stainless steel in flexible pipes. J Market Res 15:3399–3408. https://doi.org/10.1016/j.jmrt.2021.09.087

    Article  Google Scholar 

  9. Monnot M, Roche V, Estevez R et al (2017) Molybdenum effect on the sulfide stress corrosion of a super martensitic stainless steel in sour environment highlighted by electrochemical impedance spectroscopy. Electrochim Acta 252:58–66. https://doi.org/10.1016/j.electacta.2017.08.165

    Article  Google Scholar 

  10. He J, Chen L, Su Y (2022) Role of Mn addition on the general corrosion and pitting corrosion behavior of 13Cr stainless steel. ACMM 69:94–103. https://doi.org/10.1108/ACMM-10-2021-2555

    Article  Google Scholar 

  11. Jiang W, Ye D, Li J et al (2014) Reverse transformation mechanism of martensite to austenite in 00Cr15Ni7Mo2WCu2 super martensitic stainless steel. Steel Research Int 85:1150–1157. https://doi.org/10.1002/srin.201300264

    Article  Google Scholar 

  12. Ye D, Li J, Jiang W et al (2013) Formation of reversed austenite in high temperature tempering process and its effect on mechanical properties of Cr15 super martensitic stainless steel alloyed with copper. Steel Research Int 84:395–401. https://doi.org/10.1002/srin.201200105

    Article  Google Scholar 

  13. Fu J, Xia C (2021) Microstructure evolution and mechanical properties of X6CrNiMoVNb11-2 stainless steel after heat treatment. Materials 14:5243. https://doi.org/10.3390/ma14185243

    Article  Google Scholar 

  14. Soares RB, Dick LFP, Manhabosco SM et al (2020) Metallurgical and electrochemical characterization of a supermartensitic steel. Mat Res 23:e20190280. https://doi.org/10.1590/1980-5373-mr-2019-0280

    Article  Google Scholar 

  15. Escobar JD, Poplawsky JD, Faria GA et al (2018) Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: segregation, partitioning and carbide precipitation. Mater Des 140:95–105. https://doi.org/10.1016/j.matdes.2017.11.055

    Article  Google Scholar 

  16. Rodrigues CAD, Bandeira RM, Duarte BB et al (2019) Effect of titanium nitride (TiN) on the corrosion behavior of a supermartensitic stainless steel. Mater Corros 70:28–36. https://doi.org/10.1002/maco.201810289

    Article  Google Scholar 

  17. Calderón-Hernández JW, Hincapie-Ladino D, Filho EBM et al (2017) Relation between pitting potential, degree of sensitization, and reversed austenite in a supermartensitic stainless steel. Corrosion 73:953–960. https://doi.org/10.5006/2311

    Article  Google Scholar 

  18. Santos IGR, Assis FF, Silva R, et al (2021) Corrosion resistance of UNS S41426 stainless steel in acid media and its relation to chemical partition and austenite fraction. Corros Sci 188:. https://doi.org/10.1016/j.corsci.2021.109519

  19. Calderón-Hernández JW, González-Ramírez MF, Sepulveda-Castaño JM et al (2022) Electrochemical characterization of 13Cr low-carbon martensitic stainless steel - corrosion study with a mini-cell setup. J Market Res 21:2989–2998. https://doi.org/10.1016/j.jmrt.2022.10.094

    Article  Google Scholar 

  20. Bilmes PD, Solari M, Llorente CL (2001) Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Mater Charact 46:285–296. https://doi.org/10.1016/S1044-5803(00)00099-1

    Article  Google Scholar 

  21. Kishor B, Chaudhari GP, Nath SK (2018) Hot workability of 16Cr-5Ni stainless steel using constitutive equation and processing map. Mater Today: Proc 5:17213–17222. https://doi.org/10.1016/j.matpr.2018.04.131

    Article  Google Scholar 

  22. Kishor B, Chaudhari GP, Nath SK (2016) Hot deformation characteristics of 13Cr-4Ni stainless steel using constitutive equation and processing map. J Materi Eng Perform 25:2651–2660. https://doi.org/10.1007/s11665-016-2159-4

    Article  Google Scholar 

  23. Zou D, Han Y, Yan D et al (2011) Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel. Mater Des 32:4443–4448. https://doi.org/10.1016/j.matdes.2011.03.067

    Article  Google Scholar 

  24. Liu W, Shi T, Lu Q et al (2018) Failure analysis on fracture of S13Cr-110 tubing. Eng Fail Anal 90:215–230. https://doi.org/10.1016/j.engfailanal.2018.03.004

    Article  Google Scholar 

  25. Liu W, Shi T, Li S et al (2019) Failure analysis of a fracture tubing used in the formate annulus protection fluid. Eng Fail Anal 95:248–262. https://doi.org/10.1016/j.engfailanal.2018.09.009

    Article  Google Scholar 

  26. Lei XW, Feng YR, Fu AQ et al (2015) Investigation of stress corrosion cracking behavior of super 13Cr tubing by full-scale tubular goods corrosion test system. Eng Fail Anal 50:62–70. https://doi.org/10.1016/j.engfailanal.2015.02.001

    Article  Google Scholar 

  27. Zhu SD, Wei JF, Cai R et al (2011) Corrosion failure analysis of high strength grade super 13Cr-110 tubing string. Eng Fail Anal 18:2222–2231. https://doi.org/10.1016/j.engfailanal.2011.07.017

    Article  Google Scholar 

  28. Tavares SSM, Almeida BB, Corrêa DAL, Pardal JM (2018) Failure of super 13Cr stainless steel due to excessive hardness in the welded joint. Eng Fail Anal 91:92–98. https://doi.org/10.1016/j.engfailanal.2018.04.018

    Article  Google Scholar 

  29. Carrouge D, Bhadeshia HKDH, Woollin P (2004) Effect of δ-ferrite on impact properties of supermartensitic stainless steel heat affected zones. Sci Technol Weld Join 9:377–389. https://doi.org/10.1179/136217104225021823

    Article  Google Scholar 

  30. Yang Y, Pan X (2022) Effect of Mn/N ratio on microstructure and mechanical behavior of simulated welding heat affected zone in 22% Cr lean duplex stainless steel. Mater Sci Eng A 835:142676. https://doi.org/10.1016/j.msea.2022.142676

    Article  Google Scholar 

  31. Liu J, Das Y, King SM et al (2022) Effect of cooling rate after solution treatment on subsequent phase separation evolution in super duplex stainless steel 25Cr-7Ni (wt.%). Metals 12:890. https://doi.org/10.3390/met12050890

    Article  Google Scholar 

  32. Yang J, Dong H, Li P et al (2022) Analysis of microstructural evolution and mechanical properties in the simulated heat-affected zone of Fe-23Mn-0.45C-1.5Al high-Mn austenitic steel. J Market Res 20:1110–1126. https://doi.org/10.1016/j.jmrt.2022.07.099

    Article  Google Scholar 

  33. Lu Z, Xu J, Yu L et al (2022) Studies on softening behavior and mechanism of heat-affected zone of spray formed 7055 aluminum alloy under TIG welding. J Market Res 18:1180–1190. https://doi.org/10.1016/j.jmrt.2022.03.074

    Article  Google Scholar 

  34. Huda N, Midawi A, Gianetto JA, Gerlich AP (2021) Continuous cooling transformation behaviour and toughness of heat-affected zones in an X80 line pipe steel. J Market Res 12:613–628. https://doi.org/10.1016/j.jmrt.2020.11.011

    Article  Google Scholar 

  35. Kumar S, Sharma A, Pandey C et al (2022) Impact of subsequent pass weld thermal cycles on first-pass coarse grain heat-affected zone’s microstructure and mechanical properties of naval bainitic steel. J Materi Eng Perform 31:390–399. https://doi.org/10.1007/s11665-021-06177-2

    Article  Google Scholar 

  36. Kumar S, Kasyap P, Pandey C et al (2021) Role of heat inputs on microstructure and mechanical properties in coarse-grained heat-affected zone of bainitic steel. CIRP J Manuf Sci Technol 35:724–734. https://doi.org/10.1016/j.cirpj.2021.09.002

    Article  Google Scholar 

  37. Pecly PHR, Almeida BB, Perez G et al (2023) Microstructure, corrosion resistance, and hardness of simulated heat-affected zone of duplex UNS S32205 and superduplex UNS S32750 stainless steels. J Materi Eng Perform. https://doi.org/10.1007/s11665-022-07784-3

    Article  Google Scholar 

  38. Hsieh R-I, Liou H-Y, Pan Y-T (2001) Effects of cooling time and alloying elements on the microstructure of the Gleeble-simulated heat-affected zone of 22% Cr duplex stainless steels. J Materi Eng Perform 10:526–536. https://doi.org/10.1361/105994901770344665

    Article  Google Scholar 

  39. NACE (2015) ISO 15156–2 Petroleum and natural gas industries - materials for use in H2S-containing environments in oil and gas production. Part 2: cracking-resistant carbon and low-alloy steels, and the use of cast irons. http://www.iso.org. Accessed 1 Feb 2023

  40. Rykalin NN (1960) Calculation of heat processes in welding. Moscow American Welding Society

  41. ASTM (2018) E23 - Standard test methods for notched bar impact testing of metallic materials. https://doi.org/10.1520/E0023-18

  42. Cullity BD, Graham CD (2008) Introduction to magnetic materials. John Wiley & Sons Inc, Hoboken, NJ, USA

    Book  Google Scholar 

  43. Tavares SSM, Pardal JM, da Silva MR, de Oliveira CAS (2014) Martensitic transformation induced by cold deformation of lean duplex stainless steel UNS S32304. Mat Res 17:381–385. https://doi.org/10.1590/S1516-14392013005000157

    Article  Google Scholar 

  44. Tavares SSM, Noris LF, Pardal JM, da Silva MR (2019) Temper embrittlement of supermartensitic stainless steel and non-destructive inspection by magnetic Barkhausen noise. Eng Fail Anal 100:322–328. https://doi.org/10.1016/j.engfailanal.2019.02.034

    Article  Google Scholar 

  45. ABNT (2008) 6507–1 Metallic materials - Vickers hardness test. Part 1: test method. www.abnt.org.br. Accessed 1 Feb 2023

  46. Gesnouin C, Hazarabedian A, Bruzzoni P et al (2004) Effect of post-weld heat treatment on the microstructure and hydrogen permeation of 13CrNiMo steels. Corros Sci 46:1633–1647. https://doi.org/10.1016/j.corsci.2003.10.006

    Article  Google Scholar 

  47. Zou D, Han Y, Zhang W, Fang X (2010) Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel. J Iron Steel Res Int 17:50–54. https://doi.org/10.1016/S1006-706X(10)60128-8

    Article  Google Scholar 

  48. Niessen F, Grumsen FB, Hald J, Somers MAJ (2018) Formation and stabilization of reverted austenite in supermartensitic stainless steel. Metall Res Technol 115:402. https://doi.org/10.1051/metal/2018051

    Article  Google Scholar 

  49. Karlsen M, Hjelen J, Grong Ø et al (2008) SEM/EBSD based in situ studies of deformation induced phase transformations in supermartensitic stainless steels. Mater Sci Technol 24:64–72. https://doi.org/10.1179/174328407X245797

    Article  Google Scholar 

  50. Niessen F, Tiedje NS, Hald J (2017) Kinetics modeling of delta-ferrite formation and retainment during casting of supermartensitic stainless steel. Mater Des 118:138–145. https://doi.org/10.1016/j.matdes.2017.01.026

    Article  Google Scholar 

  51. Adelian A, Ranjbar K, TavakoliShoushtari M (2022) Hydrogen induced cracking and stress corrosion cracking behavior of the weld metals in 17–4 precipitation hardening stainless steel after double over aging treatment. Materialwissenschaft Werkst 53:947–962. https://doi.org/10.1002/mawe.202200003

    Article  Google Scholar 

  52. De Sanctis M, Lovicu G, Valentini R et al (2015) Microstructural features affecting tempering behavior of 16Cr-5Ni supermartensitic steel. Metall Mat Trans A 46:1878–1887. https://doi.org/10.1007/s11661-015-2811-x

    Article  Google Scholar 

  53. Tavares SSM, Pimenta AR, Cardoso ASM et al (2022) Microstructure and mechanical properties of Ti-alloyed supermartensitic 12%Cr stainless steel classes 95 ksi and 110 ksi for oil and gas production. J Materi Eng Perform. https://doi.org/10.1007/s11665-022-06872-8

    Article  Google Scholar 

  54. Tavares SSM, Pardal JM, de Souza GC et al (2014) Influence of tempering on microstructure and mechanical properties of Ti alloyed 13%Cr supermartensitic stainless steel. Mater Sci Technol 30:1470–1476. https://doi.org/10.1179/1743284713Y.0000000448

    Article  Google Scholar 

  55. Lian Y, Huang J, Zhang J et al (2015) Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel. J Materi Eng Perform 24:4253–4259. https://doi.org/10.1007/s11665-015-1749-x

    Article  Google Scholar 

  56. He X, Lü X, Wu Z et al (2021) M23C6 precipitation and Si segregation promoted by deep cryogenic treatment aggravating pitting corrosion of supermartensitic stainless steel. J Iron Steel Res Int 28:629–640. https://doi.org/10.1007/s42243-020-00514-w

    Article  Google Scholar 

  57. Rodrigues CAD, Lorenzo PLD, Sokolowski A et al (2007) Titanium and molybdenum content in supermartensitic stainless steel. Mater Sci Eng, A 460–461:149–152. https://doi.org/10.1016/j.msea.2007.01.016

    Article  Google Scholar 

  58. Baptista IP, Pimenta AR, de Heringer AVM et al (2022) Microstructure, mechanical properties and corrosion resistance of supermartensitic steel UNS S41426: comparison between forged and hot rolled seamless pipe. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10290-4

    Article  Google Scholar 

  59. ASM (1993) ASM handbook vol. 6 Welding, brazing, and soldering. ASM International, Ohio

    Google Scholar 

  60. Jiang Y, Tan H, Wang Z et al (2013) Influence of Creq/Nieq on pitting corrosion resistance and mechanical properties of UNS S32304 duplex stainless steel welded joints. Corros Sci 70:252–259. https://doi.org/10.1016/j.corsci.2013.01.037

    Article  Google Scholar 

  61. Schaeffler AL (1949) Constitution diagram for stainless steel weld metal. Metal Progress 56:680 and 680B

  62. DeLong WT (1960) A modified phase diagram for stainless steel weld metals. Metal Progress 77:98–100 and 100B

  63. Wang P, Lu SP, Xiao NM et al (2010) Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater Sci Eng, A 527:3210–3216. https://doi.org/10.1016/j.msea.2010.01.085

    Article  Google Scholar 

  64. da Silva GF, Tavares SSM, Pardal JM et al (2011) Influence of heat treatments on toughness and sensitization of a Ti-alloyed supermartensitic stainless steel. J Mater Sci 46:7737–7744. https://doi.org/10.1007/s10853-011-5753-8

    Article  Google Scholar 

  65. Tolchard JR, Sømme A, Solberg JK, Solheim KG (2015) On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction. Mater Charact 99:238–242. https://doi.org/10.1016/j.matchar.2014.12.005

    Article  Google Scholar 

  66. Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. John Wiley and Sons

    Google Scholar 

  67. Xu D, Liu Y, Ma Z et al (2014) Structural refinement of 00Cr13Ni5Mo2 supermartensitic stainless steel during single-stage intercritical tempering. Int J Miner Metall Mater 21:279–288. https://doi.org/10.1007/s12613-014-0906-9

    Article  Google Scholar 

  68. Lima AS, Nascimento AM, Abreu HFG, De Lima-Neto P (2005) Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347. J Mater Sci 40:139–144. https://doi.org/10.1007/s10853-005-5699-9

    Article  Google Scholar 

  69. Devine TM (1990) The mechanism of sensitization of austenitic stainless steel. Corros Sci 30:135–151. https://doi.org/10.1016/0010-938X(90)90068-G

    Article  Google Scholar 

  70. Noris LF, Tavares SSM, Pimenta AR et al (2023) Microstructure and mechanical properties of a multiphase 17%Cr stainless steel. Mat Res 26:e20230246. https://doi.org/10.1590/1980-5373-mr-2023-0246

    Article  Google Scholar 

Download references

Funding

The authors acknowledge Brazilian research agencies CNPq (308244/2022–2) and FAPERJ (E-26/211.412/2021; E-26/200.122/2023; E-26/200.423/2023; E-26/204.777/2022) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

A. R. Pimenta: investigation and analysis of experimental data, writing original draft, funding acquisition; I. P. Baptista: investigation and analysis of experimental data, review; I. Silva: investigation and analysis of experimental data; J. M. Pardal: investigation and analysis of experimental data, review; S. S. M. Tavares: investigation and analysis of experimental data, writing and review, funding acquisition.

Corresponding author

Correspondence to Sérgio Souto Maior Tavares.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors declare that all authors agree to sign the transfer of copyright for the publisher to publish this article upon acceptance.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenta, A.R., Baptista, I.P., Breves, I.M.d.S. et al. Effects of post-weld heat treatments in microstructure, mechanical properties, and corrosion resistance of simulated heat-affected zone of supermartensitic steel UNS S41426. Int J Adv Manuf Technol 132, 1915–1929 (2024). https://doi.org/10.1007/s00170-024-13448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13448-4

Keywords

Navigation