Skip to main content
Log in

Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Hot cracking susceptibility and the formation of brittle martensite phase are the main factors that limit the weldability of a dissimilar joint between carbon steel (CS) and austenitic stainless steel (SS). In this study, the self-constraint finger test was used to correlate the welding thermo-mechanical field with the crack susceptibility of a dissimilar weld between the CS ASTM A36 and SS AISI 304L. The finger test allowed to intercalate fingers (portions) of tested materials in the weld samples to produce dissimilar welds. The heat dissipation and the distortion behavior were related to the crack susceptibility, critical weld regions extension, and chemical species diffusion. Four samples were welded (two similar welds and two dissimilar welds) using the filler metals ER70S-6 and EC410NiMo. Welds were analyzed through light optical microscopy (LOM) and scanning electron microscopy (SEM) to characterize phases, detect cracks, microstructural changes, and element diffusion. A finite element (FE) numerical model was applied to simulate the welding thermo-mechanical field. FE estimations of distortion and residual stress helped to predict induced crack propagation (the initial gap between fingers) towards the fusion zone. Additionally, electrochemical tests were carried out to assess the corrosion susceptibility of the dissimilar welds. The observed cracks were produced due to different factors such as residual stress distribution, the formation of brittle and untempered martensitic phase in the fusion zone (FZ), and hot cracking associated with the weld sample distortion behavior. According to the FE estimations, the high thermal expansion of the SS was responsible for the bending curvature change in welds 2 and 4, which produced a gap between fingers and increased the crack extension in the FZ of weld 4. The dilution contributed to the formation of δ-ferrite in the FZ, which limited the growth of cold and hot cracks. The decarburization and sensitization were not observed in dissimilar welds due to the low element diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Not applicable

References

  1. Arivazhagan N, Singh S, Prakash S, Reddy GM (2011) Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding. Mater Design 32(5):3036–3050. https://doi.org/10.1016/j.matdes.2011.01.037

    Article  Google Scholar 

  2. Tasalloti H, Kah P, Martikainen J (2014) Effects of welding wire and torch weaving on GMAW of S355MC and AISI 304L dissimilar welds. Int J Adv Manuf Technol 71(1-4):197–205. https://doi.org/10.1007/s00170-013-5484-x

    Article  Google Scholar 

  3. Lee SH (2019) A hot cracking on dissimilar metal weld between A106Gr. B and A312 TP316L with buttering ERNiCr-3. Metals 9(5):533. https://doi.org/10.3390/met9050533

    Article  Google Scholar 

  4. Shankar V, Gill TPS, Mannan SL, Sundaresan S (2003) Solidification cracking in austenitic stainless steel welds. Sadhana-Acad P Eng S 28(3-4):359–382. https://doi.org/10.1007/BF02706438

    Article  Google Scholar 

  5. Ma H, Qin G, Geng P, Li F, Fu B, Meng X (2015) Microstructure characterization and properties of carbon steel to stainless steel dissimilar metal joint made by friction welding. Mater Design 86:587–597. https://doi.org/10.1016/j.matdes.2015.07.068

    Article  Google Scholar 

  6. Ul-Hamid A, Tawancy HM, Abbas NM (2005) Failure of weld joints between carbon steel pipe and 304 stainless steel elbows. Eng Fail Anal 12(2):181–191. https://doi.org/10.1016/j.engfailanal.2004.07.003

    Article  Google Scholar 

  7. Khalifeh AR, Dehghan A, Hajjari E (2013) Dissimilar joining of AISI 304L/St37 steels by TIG welding process. Acta Metall Sin-Engl 26(6):721–727. https://doi.org/10.1007/s40195-013-0194-9

    Article  Google Scholar 

  8. Abioye TE, Ariwoola OE, Ogedengbe TI, Farayibi PK, Gbadeyan OO (2019) Effects of welding speed on the microstructure and corrosion behavior of dissimilar gas metal arc weld joints of AISI 304 stainless steel and low carbon steel. Mater Today-Proc 17:871–877. https://doi.org/10.1016/j.matpr.2019.06.383

    Article  Google Scholar 

  9. Bansod AV, Patil AP (2017) Effect of welding processes on microstructure, mechanical properties, and corrosion behavior of low-Nickel austenitic stainless steels. Metallogr Microstruct Anal 6(4):304–314. https://doi.org/10.1007/s13632-017-0368-3

    Article  Google Scholar 

  10. Lippold JC, Savage WF (1982) Solidification of austenitic stainless steel weldments: Part III--the effect of solidification behavior on hot cracking susceptibility. Weld J 61(12):388–396

    Google Scholar 

  11. Kannengiesser T, Boellinghaus T (2014) Hot cracking tests—an overview of present technologies and applications. Weld World 58(3):397–421. https://doi.org/10.1007/s40194-014-0126-y

    Article  Google Scholar 

  12. Houldcroft PT (1955) A simple cracking test for use with argon-arc welding. Br Weld J 2(10):471–475

    Google Scholar 

  13. Savage WG, Lundin CD (1965) The Varestraint test. Weld J 44(10):433s–442s

    Google Scholar 

  14. Savage WF, Lundin CD (1966) Application of the Varestraint technique to the study of weldability. Weld J 45(11):497–503

    Google Scholar 

  15. DIN EN ISO 17641: Destructive tests on welds in metallic materials—hot cracking tests for weldments, part 1–3 arc welding processes (2005).

  16. McKewon D (1970) Versatile weld metal cracking tests. Met Constr-Brit Weld 2(8):351–352

    Google Scholar 

  17. Shankar V, Gill TPS, Mannan SL, Sundaresan S (2000) Criteria for hot cracking evaluation in austenitic stainless steel welds using longitudinal varestraint and transvarestraint tests. Sci Technol Weld Join 5(2):91–97. https://doi.org/10.1179/136217100101538074

    Article  Google Scholar 

  18. Cho DW, Na SJ, Cho MH, Lee JS (2013) A study on V-groove GMAW for various welding positions. J Mater Process Technol 213(9):1640–1652. https://doi.org/10.1016/j.jmatprotec.2013.02.015

    Article  Google Scholar 

  19. Da Silva CLM, Scotti A (2004) Performance assessment of the (Trans) Varestraint tests for determining solidification cracking susceptibility when using welding processes with filler metal. Meas Sci Technol 15(11):1–9. https://doi.org/10.1088/0957-0233/15/0/000

    Article  Google Scholar 

  20. ASM Handbook (1993) Welding, brazing and soldering. American Society of Materials, USA

    Google Scholar 

  21. Cuiuri D (2000) Control of the short-circuit gas metal arc welding process using a instantaneous current regulation Australia: School of Electrical, Computer and Telecommunications Engineering, University of Wollongong [PhD dissertation].

  22. Norrish J, Cuiuri D (2014) The controlled short circuit GMAW process: A tutorial. J Manuf Process 16:86–92. https://doi.org/10.1016/j.jmapro.2013.08.006

    Article  Google Scholar 

  23. Deo MV (2011) Minimization of Welding Distortion and Buckling. In: Modelling and Implementation. Woodhead Publishing Series in Welding and Other Joining Technologies, pp 169–185. https://doi.org/10.1533/9780857092908.2.169

  24. Stern M, Geary AL (1957) Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–63. https://doi.org/10.1149/1.2428496

    Article  Google Scholar 

  25. ASTM G102-89 (1999) Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International, West Conshohocken. https://doi.org/10.1520/G0102-89R99

    Book  Google Scholar 

  26. Lindgren LE (2006) Numerical modelling of welding. Comput Method Appl M 195(48-49):6710–6736. https://doi.org/10.1016/j.cma.2005.08.018

    Article  MATH  Google Scholar 

  27. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305. https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  28. Lee CH, Chang KH (2012) Temperature fields and residual stress distributions in dissimilar steel butt welds between carbon and stainless steels. Appl Therm Eng 45:33–41. https://doi.org/10.1016/j.applthermaleng.2012.04.007

    Article  Google Scholar 

  29. Zhu C, Cheon J, Tang X, Na SJ, Cui H (2018) Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy. Int J Heat Mass Transf 126:1206–1221. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

    Article  Google Scholar 

  30. Gery D, Long H, Maropoulos P (2005) Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol 167(2-3):393–401. https://doi.org/10.1016/j.jmatprotec.2005.06.018

    Article  Google Scholar 

  31. Heinze C, Schwenk C, Rethmeier M (2011) Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion. Simul Model Pract Th 19(9):1847–1859. https://doi.org/10.1016/j.simpat.2011.05.001

    Article  Google Scholar 

  32. Attarha MJ, Sattari-Far I (2011) Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation. J Mater Process Technol 211(4):688–694. https://doi.org/10.1016/j.jmatprotec.2010.12.003

    Article  Google Scholar 

  33. Hu Y, He X, Yu G, Ge Z, Zheng C, Ning W (2012) Heat and mass transfer in laser dissimilar welding of stainless steel and nickel. Appl Surf Sci 258(15):5914–5922. https://doi.org/10.1016/j.apsusc.2012.02.143

    Article  Google Scholar 

  34. Ueda Y, Murakawa H, Ma N (2012) Welding deformation and residual stress prevention. Butterworth-Heineman, Oxford

    Google Scholar 

  35. Liang W, Murakawa H, Deng D (2015) Investigation of welding residual stress distribution in a thick-plate joint with an emphasis on the features near weld end-start. Mater Design 67:303–312. https://doi.org/10.1016/j.matdes.2014.11.037

    Article  Google Scholar 

  36. Deng D, Liang W, Murakawa H (2007) Determination of welding deformation in fillet welded joint by means of numerical simulation and comparison with experimental measurements. J Mater Process Technol 183:219–225. https://doi.org/10.1016/j.jmatprotec.2006.10.013

    Article  Google Scholar 

  37. Akbari Mousavi SAA, Miresmaeili R (2008) Experimental and numerical analyses of residual stress distributions in TIG welding process for 304L stainless steel. J Mater Process Technol 208:383–394. https://doi.org/10.1016/j.jmatprotec.2008.01.015

    Article  Google Scholar 

  38. Lippold JC (2015) Welding metallurgy and weldability. John Wiley & Sons Incorporated, New Jersey

    Book  Google Scholar 

  39. Hinton RW, Wiswesser RK (2008) Estimating welding preheat requirements for unknown grades of carbon and low-alloy steels. Weld journal Hinton, R. W., & Wiswesser, R. K. (2008). Estimating welding preheat requirements for unknown grades of carbon and low-alloy steels. Weld J 87(11):273–276

    Google Scholar 

  40. Kotecki DJ, Siewert TA (1992) WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram. Weld J 71(5):171–178

    Google Scholar 

  41. Hasçalik A, Unal E, Ozdemir N (2006) Fatigue behavior of AISI 304 steel to AISI 4340 steel welded by friction welding. J Mater Sci 41:3233–3239. https://doi.org/10.1007/s10853-005-5478-7

    Article  Google Scholar 

  42. Jafarzadegan M, Feng AH, Abdollah-zadeh A, Saeid T, Shen J, Assadi H (2012) Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel. Mater Charact 74:28–41. https://doi.org/10.1016/J.MATCHAR.2012.09.004

    Article  Google Scholar 

  43. Wei P, Li H, Liu J, Li S, Zhang Y, Zhu Q, Lei Y (2020) The effect of water environment on microstructural characteristics, compositional heterogeneity and microhardness distribution of 16Mn/304L dissimilar welded joints. J Manuf Process 56:417–427. https://doi.org/10.1016/j.jmapro.2020.05.006

    Article  Google Scholar 

  44. Ficquet X, Smith DJ, Truman CE, Kingston EJ, Dennis RJ (2009) Measurement and prediction of residual stress in a bead-on-plate weld benchmark specimen. Int J Press Vessel Pip 86(1):20–30. https://doi.org/10.1016/j.ijpvp.2008.11.008

    Article  Google Scholar 

  45. Aloraier AS, Joshi S (2012) Residual stresses in flux cored arc welding process in bead-on-plate specimens. Mat Sci Eng A 534:13–21. https://doi.org/10.1016/j.msea.2011.10.107

    Article  Google Scholar 

  46. Rossini NS, Dassisti M, Benyounis KY, Olabi AG (2012) Methods of measuring residual stresses in components. Mater Design 35:572–588. https://doi.org/10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  47. Wang J, Yin X, Murakawa H (2013) Experimental and computational analysis of residual buckling distortion of bead-on-plate welded joint. J Mater Process Technol 213(8):1447–1458. https://doi.org/10.1016/j.jmatprotec.2013.02.009

    Article  Google Scholar 

  48. DuPont JN, Kiser SD, Lippold JC (2009) Dissimilar welding. In: Welding Metallurgy and Weldability of Nickel-Base Alloys. Wiley, New Jersey

    Chapter  Google Scholar 

  49. Köse C, Kaçar R (2014) The effect of preheat & post weld heat treatment on the laser weldability of AISI 420 martensitic stainless steel. Mater Design 64:221–226. https://doi.org/10.1016/j.matdes.2014.07.044

    Article  Google Scholar 

  50. Kurt B, Orhan N, Somunkıran I, Kaya M (2009) The effect of austenitic interface layer on microstructure of AISI 420 martensitic stainless steel joined by keyhole PTA welding process. Mater Design 30:661–664. https://doi.org/10.1016/j.matdes.2008.05.027

    Article  Google Scholar 

  51. Badheka VJ, Agrawal SK, Shroff N (2010) Mode of failure of resistance spot welded martenstic stainless steel-part-II. Int J Mech Mater Eng 5(1):43–52

    Google Scholar 

  52. Torkamany MJ, Sabbaghzadeh J, Hamedi MJ (2012) Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels. Mater Design 34:666–672. https://doi.org/10.1016/j.matdes.2011.05.024

    Article  Google Scholar 

  53. Rabizadeh T, Khameneh-Asl S (2019) Casein as a natural protein to inhibit the corrosion of mild steel in HCl solution. J Mol Liq 276:694–704. https://doi.org/10.1016/j.molliq.2018.11.162

    Article  Google Scholar 

  54. Ashassi-Sorkhabi H, Asghari E (2008) Effect of hydrodynamic conditions on the inhibition performance of L-methionine as a “green” inhibitor. Electrochim Acta 54(2):162–167. https://doi.org/10.1016/j.electacta.2008.08.024

    Article  Google Scholar 

  55. Yeganeh M, Khosravi-Bigdeli I, Eskandari M, Alavi-Zaree SR (2020) Corrosion Inhibition of L-Methionine Amino Acid as a Green Corrosion Inhibitor for Stainless Steel in the H2SO4 Solution. J Mater Eng Perform 29(6):3983–3994. https://doi.org/10.1007/s11665-020-04890-y

    Article  Google Scholar 

  56. Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Feliú S (2008) Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochim Acta 53(27):7890–7902. https://doi.org/10.1016/j.electacta.2008.06.001

    Article  Google Scholar 

  57. Brett CMA, Dias L, Trindade B, Fischer R, Mies S (2006) Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying. Electrochim Acta 51(8-9):1752–1760. https://doi.org/10.1016/j.electacta.2005.02.124

    Article  Google Scholar 

  58. Chang JW, Guo XW, Fu PH, Peng LM, Ding WJ (2007) Effect of heat treatment on corrosion and electrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Electrochim Acta 52(9):3160–3167. https://doi.org/10.1016/j.electacta.2006.09.069

    Article  Google Scholar 

  59. King AD, Birbilis N, Scully JR (2014) Accurate electrochemical measurement of magnesium corrosion rates: A combined impedance, mass-loss and hydrogen collection study. Electrochim Acta 121:394–406. https://doi.org/10.1016/j.electacta.2013.12.124

    Article  Google Scholar 

  60. Anik M, Celikten G (2007) Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions. Corros Sci 49(4):1878–1894. https://doi.org/10.1016/j.corsci.2006.10.016

    Article  Google Scholar 

  61. Arrabal R, Pardo A, Merino MC, Mohedano M, Casajús P, Paucar K, Garcés G (2012) Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5 wt. % NaCl solution. Corros Sci 55:301–312. https://doi.org/10.1016/j.corsci.2011.10.033

    Article  Google Scholar 

  62. Baril G, Blanc C, Pébère N (2001) AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys-Characterization with respect to their microstructures. J Electrochem 148(12):B489–B496. https://doi.org/10.1149/1.1415722

    Article  Google Scholar 

  63. Sun M, Yerokhin A, Bychkova MY, Shtansky DV, Levashov EA, Matthews A (2016) Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy. Corros Sci 11:753–769. https://doi.org/10.1016/j.corsci.2016.06.016

    Article  Google Scholar 

  64. Al-R SI, Eman AA, Mahdi MH (2013) The Influence of microstructure on the corrosion rate of carbon steels. Eng Tech J 31:1825–1836

    Google Scholar 

  65. Ramirez-Arteaga AM, Gonzalez-Rodriguez JG, Campillo B, Gaona-Tiburcio C, Dominguez-Patiño G, Leduc Lezama L, Chacon-Nava JG, Neri-Flores MA, Martinez-Villafañe A (2010) An electrochemical study of the corrosion behavior of a dual phase steel in 0.5m H2SO4. Int J Electrochem Sci 5:1786–1798

    Google Scholar 

  66. Razak NAA, Ng SS (2014) Investigation of effects of MIG welding on corrosion behavior of AISI 1010 carbon steel. J Mech Eng Sci 7(1):1168–1178. https://doi.org/10.15282/jmes.7.2014.16.0114

    Article  Google Scholar 

  67. Mansfeld F, Shih H, Greene H, Tsai CH (1993) Analysis of EIS data for common corrosion processes. In: Electrochemical impedance: analysis and interpretation, 1st edn. ASTM publication, USA

    Google Scholar 

  68. Bellezze T, Giuliani G, Viceré A, Roventi G (2018) Study of stainless steels corrosion in a strong acid mixture. Part 2: anodic selective dissolution, weight loss and electrochemical impedance spectroscopy tests. Corros Sci 130:12–21. https://doi.org/10.1016/j.corsci.2017.10.010

    Article  Google Scholar 

  69. Rahal C, Masmoudi M, Abdelhedi R, Sabot R, Jeannin M, Bouaziz M, Refait P (2016) Olive leaf extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: A study by voltammetry around OCP. J Electroanal Chem 769:53–61. https://doi.org/10.1016/j.jelechem.2016.03.010

    Article  Google Scholar 

  70. Yuan XZR, Song C, Wang H, Zhang J (2009) Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications. Springer-Verlag, London

    Google Scholar 

Download references

Code availability

Not applicable

Funding

The authors would like to thank the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) and the Tecnológico Nacional de México/Instituto Tecnológico de Morelia for support during the project. N. Alcantar-Mondragón and Víctor García´s studies were sponsored by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) (N.B. 749874, 628208 and 2019-000006-01NACV-00236).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding author

Correspondence to Víctor García-García.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcantar-Modragón, N., García-García, V., Reyes-Calderón, F. et al. Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model. Int J Adv Manuf Technol 116, 2661–2686 (2021). https://doi.org/10.1007/s00170-021-07596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07596-0

Keywords

Navigation