Skip to main content
Log in

Microstructure, mechanical properties, and corrosion resistance of supermartensitic steel UNS S41426: comparison between forged and hot-rolled seamless pipe

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Supermartensitic stainless steels are a sub-family of stainless steels designed to meet the demands of harsh environments and high mechanical stresses. The performance of these materials comes from balanced chemical composition and correct thermal treatment of quenching and tempering. These stainless steels have a severe reduction in C content, Ni, and Mo additions, besides microadditions of Ti, Nb, V, and/or N. The oil and gas industries used the supermartensitic stainless to mandrels for gas and chemical product injection. These mandrels are manufactured using forged parts and seamless pipes joined by welding. Due to recent failures in this equipment, an investigation of the performance and properties of those materials is necessary. This work investigated the different manufacturing processes used in UNS S41426, a supermartensitic stainless steel with Ti and V microadditions. The microstructural characteristics, mechanical properties, and corrosion resistance of seamless tubes and forged parts were analyzed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. IEA (2022) U.S. Energy Information Administration. https://www.eia.gov/

  2. Liu W, Li J, Zhong Y et al (2022) Failure analysis on aluminum alloy drill pipe with pits and parallel transverse cracks. Eng Fail Anal 131:105809. https://doi.org/10.1016/j.engfailanal.2021.105809

    Article  Google Scholar 

  3. Kölblinger AP, Tavares SSM, Della Rovere CA, Pimenta AR (2022) Failure analysis of a flange of superduplex stainless steel by preferential corrosion of ferrite phase. Eng Fail Anal 134:106098. https://doi.org/10.1016/j.engfailanal.2022.106098

    Article  Google Scholar 

  4. Liu W, Shi T, Li S et al (2019) Failure analysis of a fracture tubing used in the formate annulus protection fluid. Eng Fail Anal 95:248–262. https://doi.org/10.1016/j.engfailanal.2018.09.009

    Article  Google Scholar 

  5. Tavares SSM, Almeida BB, Corrêa DAL, Pardal JM (2018) Failure of super 13Cr stainless steel due to excessive hardness in the welded joint. Eng Fail Anal 91:92–98. https://doi.org/10.1016/j.engfailanal.2018.04.018

    Article  Google Scholar 

  6. Liu W, Shi T, Lu Q et al (2018) Failure analysis on fracture of S13Cr-110 tubing. Eng Fail Anal 90:215–230. https://doi.org/10.1016/j.engfailanal.2018.03.004

    Article  Google Scholar 

  7. Lei XW, Feng YR, Fu AQ et al (2015) Investigation of stress corrosion cracking behavior of super 13Cr tubing by full-scale tubular goods corrosion test system. Eng Fail Anal 50:62–70. https://doi.org/10.1016/j.engfailanal.2015.02.001

    Article  Google Scholar 

  8. Zhu SD, Wei JF, Cai R et al (2011) Corrosion failure analysis of high strength grade super 13Cr-110 tubing string. Eng Fail Anal 18:2222–2231. https://doi.org/10.1016/j.engfailanal.2011.07.017

    Article  Google Scholar 

  9. Esaklul KA, Ahmed TM (2009) Prevention of failures of high strength fasteners in use in offshore and subsea applications. Eng Fail Anal 16:1195–1202. https://doi.org/10.1016/j.engfailanal.2008.07.012

    Article  Google Scholar 

  10. Alcantar-Modragón N, García-García V, Reyes-Calderón F et al (2021) Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model. Int J Adv Manuf Technol 116:2661–2686. https://doi.org/10.1007/s00170-021-07596-0

    Article  Google Scholar 

  11. Crawford JD, Rohrig K, Bechet S (1982) High-strength cast stainless steels with enhanced corrosion resistance. In: Stainless Steel Castings. ASTM International

  12. Carrouge D, Bhadeshia HKDH, Woollin P (2004) Effect of δ-ferrite on impact properties of supermartensitic stainless steel heat affected zones. Sci Technol Weld Joining 9:377–389. https://doi.org/10.1179/136217104225021823

    Article  Google Scholar 

  13. Wang P, Lu SP, Xiao NM et al (2010) Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater Sci Eng, A 527:3210–3216. https://doi.org/10.1016/j.msea.2010.01.085

    Article  Google Scholar 

  14. da Silva GF, Tavares SSM, Pardal JM et al (2011) Influence of heat treatments on toughness and sensitization of a Ti-alloyed supermartensitic stainless steel. J Mater Sci 46:7737–7744. https://doi.org/10.1007/s10853-011-5753-8

    Article  Google Scholar 

  15. Xu D, Liu Y, Ma Z et al (2014) Structural refinement of 00Cr13Ni5Mo2 supermartensitic stainless steel during single-stage intercritical tempering. Int J Miner Metall Mater 21:279–288. https://doi.org/10.1007/s12613-014-0906-9

    Article  Google Scholar 

  16. Zou D, Han Y, Zhang W, Fang X (2010) Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel. J Iron Steel Res Int 17:50–54. https://doi.org/10.1016/S1006-706X(10)60128-8

    Article  Google Scholar 

  17. Liu Y, Ye D, Yong Q et al (2011) Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel. J Iron Steel Res Int 18:60–66. https://doi.org/10.1016/S1006-706X(11)60118-0

    Article  Google Scholar 

  18. Tolchard JR, Sømme A, Solberg JK, Solheim KG (2015) On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction. Mater Charact 99:238–242. https://doi.org/10.1016/j.matchar.2014.12.005

    Article  Google Scholar 

  19. Kim S, Lee Y (2011) Effect of retained austenite phase on springback of cold-rolled TRIP steel sheets. Mater Sci Eng, A 530:218–224. https://doi.org/10.1016/j.msea.2011.09.077

    Article  Google Scholar 

  20. Jacques PJ, Delannay F, Ladrière J (2001) On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall and Mat Trans A 32:2759–2768. https://doi.org/10.1007/s11661-001-1027-4

    Article  Google Scholar 

  21. Karlsen M, Hjelen J, Grong Ø et al (2008) SEM/EBSD based in situ studies of deformation induced phase transformations in supermartensitic stainless steels. Mater Sci Technol 24:64–72. https://doi.org/10.1179/174328407X245797

    Article  Google Scholar 

  22. Bilmes PD, Solari M, Llorente CL (2001) Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Mater Charact 46:285–296. https://doi.org/10.1016/S1044-5803(00)00099-1

    Article  Google Scholar 

  23. He X, Lü X, Wu Z et al (2021) M23C6 precipitation and Si segregation promoted by deep cryogenic treatment aggravating pitting corrosion of supermartensitic stainless steel. J Iron Steel Res Int 28:629–640. https://doi.org/10.1007/s42243-020-00514-w

    Article  Google Scholar 

  24. Soares RB, Dick LFP, Manhabosco SM et al (2020) Metallurgical and electrochemical characterization of a supermartensitic steel. Mat Res 23:e20190280. https://doi.org/10.1590/1980-5373-mr-2019-0280

    Article  Google Scholar 

  25. Zou D, Han Y, Yan D et al (2011) Hot workability of 00Cr13Ni5Mo2 supermartensitic stainless steel. Mater Des 32:4443–4448. https://doi.org/10.1016/j.matdes.2011.03.067

    Article  Google Scholar 

  26. NACE (2015) NACE ISO 15156–2 Petroleum and natural gas industries — materials for use in H2S-containing environments in oil and gas production. Part 2: Cracking-resistant carbon and low-alloy steels, and the use of cast irons

  27. ASTM (2018) E23 - Standard test methods for notched bar impact testing of metallic materials. ASTM International

  28. ASTM (2021) A370 - Standard test methods and definitions for mechanical testing of steel products. ASTM International

  29. ABNT (2008) 6507–1 Metallic materials — Vickers hardness test. Part 1: Test method

  30. ASTM (2021) E112 - Standard test methods for determining avarage grain size

  31. Cullity BD, Graham CD (2008) Introduction to magnetic materials. John Wiley & Sons Inc, Hoboken, NJ, USA

    Book  Google Scholar 

  32. Tavares SSM, Pardal JM, da Silva MR, de Oliveira CAS (2013) Martensitic transformation induced by cold deformation of lean duplex stainless steel UNS S32304. Mat Res 17:381–385. https://doi.org/10.1590/S1516-14392013005000157

    Article  Google Scholar 

  33. Tavares SSM, Noris LF, Pardal JM, da Silva MR (2019) Temper embrittlement of supermartensitic stainless steel and non-destructive inspection by magnetic Barkhausen noise. Eng Fail Anal 100:322–328. https://doi.org/10.1016/j.engfailanal.2019.02.034

    Article  Google Scholar 

  34. ISO (2006) 12732 Corrosion of metals and alloys — electrochemical potentiokinetic reactivation measurement using the double loop method (based on Cihal’s method)

  35. Santos IGR, Assis FF, Silva R et al (2021) Corrosion resistance of UNS S41426 stainless steel in acid media and its relation to chemical partition and austenite fraction. Corros Sci. https://doi.org/10.1016/j.corsci.2021.109519

    Article  Google Scholar 

  36. Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. John Wiley and Sons

    Google Scholar 

  37. Tavares SSM, Pimenta AR, Cardoso ASM et al (2022) Microstructure and mechanical properties of Ti-alloyed supermartensitic 12% Cr stainless steel classes 95 ksi and 110 ksi for oil and gas production. J of Materi Eng and Perform. https://doi.org/10.1007/s11665-022-06872-8

    Article  Google Scholar 

  38. Tavares SSM, Pardal JM, de Souza GC et al (2014) Influence of tempering on microstructure and mechanical properties of Ti alloyed 13% Cr supermartensitic stainless steel. Mater Sci Technol 30:1470–1476. https://doi.org/10.1179/1743284713Y.0000000448

    Article  Google Scholar 

  39. Zappa S, Svoboda H, Surian E (2017) Effect of post-weld heat treatment on the mechanical properties of supermartensitic stainless steel deposit. J of Materi Eng and Perform 26:514–521. https://doi.org/10.1007/s11665-016-2467-8

    Article  Google Scholar 

  40. Solheim KG, Solberg JK, Walmsley J et al (2013) The role of retained austenite in hydrogen embrittlement of supermartensitic stainless steel. Eng Fail Anal 34:140–149. https://doi.org/10.1016/j.engfailanal.2013.07.025

    Article  Google Scholar 

  41. Nakagawa H, Miyazaki T (1999) Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel. J Mater Sci 34:3091–3908

    Article  Google Scholar 

  42. Escobar JD, Oliveira JP, Salvador CAF et al (2019) Double-step inter-critical tempering of a supermartensitic stainless steel: evolution of hardness, microstructure and elemental partitioning. Mater Charact 158:109994. https://doi.org/10.1016/j.matchar.2019.109994

    Article  Google Scholar 

  43. Hollomon JH (1945) Tensile deformation TransAIME 162:268–290

    Google Scholar 

  44. Ludwik P (1909) Element der Technologischen Mechanik. Springer, Berlin

    Book  Google Scholar 

  45. Voce E (1948) The relationship between stress and strain for homogeneous deformation. J Inst Met 74:537–562

    Google Scholar 

  46. Aquino JM, Della Rovere CA, Kuri SE (2009) Intergranular corrosion susceptibility in supermartensitic stainless steel weldments. Corros Sci 51:2316–2323. https://doi.org/10.1016/j.corsci.2009.06.009

    Article  Google Scholar 

  47. Čı́hal V, Štefec R (2001) On the development of the electrochemical potentiokinetic method. Electrochimica Acta 46:3867–3877https://doi.org/10.1016/S0013-4686(01)00674-0

Download references

Funding

Authors acknowledge to Brazilian research agency CNPq (grant number 314314/2018–0) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro FAPERJ (E-26/211.412/2021 (266445)) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Souto Maior Tavares.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors declare that all authors agree to sign the transfer of copyright for the publisher to publish this article upon acceptance.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baptista, I.P., Pimenta, A.R., de Assis Verly Heringer, M. et al. Microstructure, mechanical properties, and corrosion resistance of supermartensitic steel UNS S41426: comparison between forged and hot-rolled seamless pipe. Int J Adv Manuf Technol 123, 2643–2653 (2022). https://doi.org/10.1007/s00170-022-10290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10290-4

Keywords

Navigation