Skip to main content
Log in

Response surface methodology for advanced manufacturing technology optimization: theoretical fundamentals, practical guidelines, and survey literature review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Process optimization normally involves the combination of mathematical and statistical techniques which can be approached by distinct ways. Despite the fact that different methods can be found in the literature, the response surface methodology raised as one of the most effective ways for performing process optimization, by combining design and analysis of experiments, modeling techniques, and optimization methods. However, practical guidelines for response surface methodology and critical analysis of its applications are quite scarce. Thus, this paper aims to present the theoretical principles and practical guidelines for carrying response surface methodology as well as to provide empirical evidence on its critical aspects for manufacturing optimization. In order to accomplish with this objective, 49 papers published in the International Journal of Advanced Manufacturing Technology (IJAMT) from 2014 to 2017 were investigated and reproduced, allowing the analysis of 123 response surfaces. Surprisingly, more than 75.29% of the models have presented a saddle shape. The practical meaning of this finding is that the stationary point is not a suitable solution for the optimization of those surfaces. Besides, multiple response surfaces are more commonly found in the literature than individual ones. From this amount of papers, 71.88% of the works investigated have presented significant correlation with their peers and 87.61% have convexity incompatible with the optimization direction. Most of the optimization solutions have found outside of experimental region which reveals a preponderant neglect of the nonlinear constraints involving the definition of the experimental region. It was also verified that the proportion of functions in saddle format corresponds to 96.86% of the models estimated in flat regions. Moreover, it was found that the number of center points is commonly changed and all the manufacturing processes investigated are driven by at most five control parameters. Finally, considering the theoretical principles, the practical guidelines, and the obtained results, a follow-along example involving the optimization of AISI H13-hardened steel turning with PCBN wiper, previously published by the authors in IJAMT, was revisited by using response surface methodology. The results corroborated the proposed framework suitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

f :

Feed rate

V c :

Cutting speed

d :

Depth of cut

y :

Response variable, function value, or estimated model

β :

Model coefficient

x :

Independent variable

ε :

Experimental error or residual

N :

Total number of experiments

k :

Number of factors or input variables

n C :

Number of center points

α :

Axial distance

n F :

Number of factorial points

SS :

Squared sum

MS :

Squared mean

F 0 :

Fisher-Snedecor statistics

∅:

Number of degrees of freedon of F0

Γ:

Gama function

δi:

Spherical moments

m :

Index of the space of the model

M :

Matrix of moments

x s :

Stationary point coordinate vector

B :

Matrix of coefficients of second-order terms

b :

Vector of coefficients of first-order terms

ρ :

Design radius or the Pearson correlation

y s :

Estimative of the response variable in the stationary point

λ :

Eigenvalues of \( \hat{\boldsymbol{B}} \)

w :

Canonical variables

I :

Identity matrix

μ :

Mean vector

c :

Chi-squared variable

\( \boldsymbol{\sum}^{\sim } \) :

Variance-covariance matrix

∇:

Gradient vector

P :

Matrix of the eigenvectors of \( {\tilde{\boldsymbol{\Sigma}}}^{-\mathbf{1}} \)

X :

Vector of experimental factors

f (X):

Objective function

g j(X):

Generic inequality constraint

l j(X):

Generic equality constraint

α 1, α 2 :

Relative weights of linearly combined functions

n :

Total number of data

\( {\chi}_0^2 \) :

Qui-squared statistic

ABNT:

Brazilian Association of Technical Standards

ANOVA:

Analysis of variance

BBD:

Box-Behnken design

CCD:

Central composite design

DOE:

Design of experiments

FCCD:

Face-centered central composite design

FFD:

Full factorial design

EWR:

Electrode wear rate

GRG:

Generalized reduced gradient

IQR:

Interquartile range

NBI:

Normal boundary intersection

NOMATI:

Manufacturing Optimization and Innovation Technology Center

Ortho.:

Orthogonal

MRR:

Material removal rate

MRV:

Multiple response variables

RSM:

Response surface methodology

OLS:

Ordinary least squares

PC:

Principal component score

PCA:

Principal component analysis

SAM:

Steepest ascent method

SPV:

Scaled prediction variance

UP:

Uniform precision

WPCA:

Weighted principal component analysis

References

  1. Box GEP, Draper NR (1959) A basis for the selection of a response surface design. J Am Stat Assoc 54(287):622–654

    Article  MathSciNet  Google Scholar 

  2. Box GEP, Draper NR (2007) Response surfaces, mixtures, and ridge analyses, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  3. Carter WH, Chinchilli VM, Myers RH, Campbell ED (1986) Confidence intervals and an improved ridge analysis of response surfaces. Technometrics 28(4):339–346

    Article  MathSciNet  Google Scholar 

  4. Jackson MJ, Lathery E, Whitfield MD, Handy RG, Silva MB, Machado AR, Silva RB (2017) Computational analysis of turning G10530 steel to eliminate chip crowding using variable cutting speeds. Int J Adv Manuf Technol 92:2341–2363. https://doi.org/10.1007/s00170-017-0279-0

    Article  Google Scholar 

  5. Suyama DI, Diniz AE, Pederiva R (2017) Tool vibration in internal turning of hardened steel using cBN tool. Int J Adv Manuf Technol 88:2485–2495. https://doi.org/10.1007/s00170-016-8964-y

    Article  Google Scholar 

  6. Gamarra JR, Diniz AE (2018) Taper turning of super duplex stainless steel: tool life, tool wear and workpiece surface roughness. J Braz Soc Mech Sci Eng 40:39. https://doi.org/10.1007/s40430-018-0991-1

    Article  Google Scholar 

  7. Loureiro D, Diniz AE, Farina AB, Delijaicov S (2017) The influence of turning parameters on surface integrity of nickel alloy 625. Proc Inst Mech Eng B J Eng Manuf 232(10):1837–1847

    Article  Google Scholar 

  8. Myers RH, Carter WH (1973) Response surface techniques for dual response systems. Technometrics 15(2):301–317. https://doi.org/10.1080/00401706.1973.10489044

    Article  MathSciNet  MATH  Google Scholar 

  9. Myers RH, Montgomery DC (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  10. Leithold L (1986) The calculus with analytic geometry, 5th edn. Harper & Row, New York

    MATH  Google Scholar 

  11. Box GEP (1954) Exploration and exploitation of response surfaces: some general considerations and examples. Biometrics 10(1):16–60. https://doi.org/10.2307/3001663

    Article  Google Scholar 

  12. Biles WE (1975) A response surface method for experimental optimization of multi-response processes. Ind Eng Chem Process Des Dev 14(2):152–158. https://doi.org/10.1021/i260054a010

    Article  Google Scholar 

  13. Stewart J (2012) Calculus, 7th edn. Cengage, Belmont

    MATH  Google Scholar 

  14. Montgomery DC (2017) Designs and analysis of experiments, 9th edn. Wiley, Hoboken

    Google Scholar 

  15. Teimouri R, Amini S, Mohagheghian N (2017) Experimental study and empirical analysis on effect of ultrasonicvibration during rotary turning of aluminum 7075 aerospace alloy. J Manuf Process 26:1–17. https://doi.org/10.1016/j.jmapro.2016.11.011

    Article  Google Scholar 

  16. Ekici E, Motorcu AR (2014) Evaluation of drilling Al/SiC composites with cryogenically treated HSS drills. Int J Adv Manuf Technol 74(9):1495–1505. https://doi.org/10.1007/s00170-014-6085-z

    Article  Google Scholar 

  17. Patel MGC, Krishna P, Parappagoudar MB (2016) An intelligent system for squeeze casting process – soft computing based approach. Int J Adv Manuf Technol 86(9):3051–3065. https://doi.org/10.1007/s00170-016-8416-8

    Article  Google Scholar 

  18. Sivaraos, Milkeya KR, Samsudina AR, Dubeyb AK, Kiddc P (2014) Comparison between Taguchi method and response surface methodology (RSM) in modelling CO2 laser machining. Jordan J Mech Indust Eng 8(1):35–42

    Google Scholar 

  19. Bösiger P, Richard IMT, LeGat L, Michen B, Schubert M, Rossi RM, Fortunato G (2018) Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers. Carbohydr Polym 186:122–131. https://doi.org/10.1016/j.carbpol.2018.01.038

    Article  Google Scholar 

  20. Vakili-Azghandi M, Fattah-alhosseini A, Keshavarz MK (2018) Optimizing the electrolyte chemistry parameters of PEO coating on 6061 Al alloy by corrosion rate measurement: response surface methodology. Measurement 124:252–259. https://doi.org/10.1016/j.measurement.2018.04.038

    Article  Google Scholar 

  21. Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta VK (2015) Modeling of competitive ultrasonic assisted removal of the dyes - methylene blue and safranin-O using Fe3O4 nanoparticles. Chem Eng J 268:28–37. https://doi.org/10.1016/j.cej.2014.12.090

    Article  Google Scholar 

  22. Dufreneix S, Legrand C, Di Bartolo C, Bremaud M, Mesgouez J, Tiplica T, Autret D (2017) Design of experiments in medical physics: application to the AAA beam model validation. Phys Med 41:26–32. https://doi.org/10.1016/j.ejmp.2017.05.068

    Article  Google Scholar 

  23. Chitichotpanya P, Inprasit T, Chitichotpanya C (2017) In vitro assessment of antibacterial potential and mechanical properties of Ag-TiO2/WPU on medical cotton optimized with response surface methodology. J Nat Fibers 16:88–99. https://doi.org/10.1080/15440478.2017.1408520

    Article  Google Scholar 

  24. Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S (2012) Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop 36(7):1449–1456. https://doi.org/10.1007/s00264-012-1491-z

    Article  Google Scholar 

  25. Seo J, Kim PJH, Myoungjae L, You K, Moon J, Lee DH, Paik U (2017) Multi-objective optimization of tungsten CMP slurry for advanced semiconductor manufacturing using a response surface methodology. Mater Des 117:131–138. https://doi.org/10.1016/j.matdes.2016.12.066

    Article  Google Scholar 

  26. Pereira RBD, Hincapia CAA, Campos PHS, Paiva AP, Ferreira JR (2016) Multivariate global index and multivariate mean square error optimization of AISI 1045 end milling. Int J Adv Manuf Technol 87:3195–3209. https://doi.org/10.1007/s00170-016-8703-4

    Article  Google Scholar 

  27. Roshan BS, Jooibari BM, Teimouri R, Asgharzadeh-Ahmadi G, Falahati-Naghibi M, Sohrabpoor H (2013) Optimization of friction stir welding process of AA7075 aluminum alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm. Int J Adv Manuf Technol 69:1803–1818. https://doi.org/10.1007/s00170-013-5131-6

    Article  Google Scholar 

  28. Yang A, Han Y, Pan Y, Xing H, Li J (2017) Optimum surface roughness prediction for titanium alloy by adopting response surface methodology. Results in Physics 7:1046–1050. https://doi.org/10.1016/j.rinp.2017.02.027

    Article  Google Scholar 

  29. Rodrigues VFS, Ferreira JR, Paiva AP, Souza LGP, Pereira RBD, Brandão LC (2018) Robust modeling and optimization of borehole enlarging by helical milling of aluminum alloy Al7075. Int J Adv Manuf Technol 100:2583–2599. https://doi.org/10.1007/s00170-018-2832-x

    Article  Google Scholar 

  30. Vairamani G, Kumar TS, Malarvizhi S, Balasubramanian V (2013) Application of response surface methodology to maximize tensile strength and minimize interface hardness of friction welded dissimilar joints of austenitic stainless steel and copper alloy. Trans Nonferrous Metals Soc China 23(8):2250–2259. https://doi.org/10.1016/S1003-6326(13)62725-9

    Article  Google Scholar 

  31. Subramanian AVM, Nachimuthu MDG, Cinnasamy V (2017) Assessment of cutting force and surface roughness in LM6/SiCp using response surface methodology. J Appl Res Technol 15(3):283–296. https://doi.org/10.1016/j.jart.2017.01.013

    Article  Google Scholar 

  32. Mostafaei M, Javadikia H, Naderloo L (2016) Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy 115:626–636. https://doi.org/10.1016/j.energy.2016.09.028

    Article  Google Scholar 

  33. Costa DMD, Brito TG, Paiva AP, Leme RC, Balestrassi PP (2016a) A normal boundary intersection with multivariate mean square error approach for dry end milling process optimization of the AISI 1045 steel. J Clean Prod 135:1658–1672. https://doi.org/10.1016/j.jclepro.2016.01.062

    Article  Google Scholar 

  34. Hadad M (2015) An experimental investigation of the effects of machining parameters on environmentally friendly grinding process. J Clean Prod 108:217–231. https://doi.org/10.1016/j.jclepro.2015.05.092

    Article  Google Scholar 

  35. Prabhu R, Alwarsamy T (2017) Effect of process parameters on ferrite number in cladding of 317L stainless steel by pulsed MIG welding. J Mech Sci Technol 31(3):1341–1347. https://doi.org/10.1007/s12206-017-0234-x

    Article  Google Scholar 

  36. Box GEP, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 28:195–241. https://doi.org/10.1214/aoms/1177707047

    Article  MathSciNet  MATH  Google Scholar 

  37. Paiva AP, Ferreira JR, Balestrassi PP (2007) A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization. J Mater Process Technol 189:26–35. https://doi.org/10.1016/j.jmatprotec.2006.12.047

    Article  Google Scholar 

  38. Khuri AI, Cornell JA (1996) Response surface: design and analyses, 2nd edn. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  39. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc 13(1):1–45

    MathSciNet  MATH  Google Scholar 

  40. Mongomery DC (1999) Experimental design for product and process design and development. J R Stat Soc Ser D (Statistician) 48(2):159–177

    Article  Google Scholar 

  41. Box GEP, Hunter JS (1961) The 2k-p fractional factorial designs part I. Technometrics 3(3):311–351

    MathSciNet  Google Scholar 

  42. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation and discovery, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  43. Del Castilho E (2007) Process optimization: a statistical approach. Springer, New York

    Book  Google Scholar 

  44. Del Castilho E, Cahya S (2001) A tool for computing confidence regions on the stationary point of response surface. Am Stat 55(4):358–365. https://doi.org/10.1198/000313001753272349

    Article  MathSciNet  Google Scholar 

  45. Myers RH, Kuri AI, Carter WH (1989) Response surface methodology: 1966-1988. Technometrics 31(2):137–157

    MathSciNet  MATH  Google Scholar 

  46. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  Google Scholar 

  47. Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2(2):28–149. https://doi.org/10.1002/wics.73

    Article  Google Scholar 

  48. Vadde KK, Syrotiuk VR, Montgomery DC (2006) Optimizing protocol interaction using response surface methodology. IEEE Trans Mob Comput 5(6):627–638. https://doi.org/10.1109/TMC.2006.82

    Article  Google Scholar 

  49. Lundstedt T, Seifert E, Abramo L, Thelin B, Nystrom A, Pertensen J, Bergman R (1998) Experimental design and optimization. Chemom Intell Lab Syst 42:3–40. https://doi.org/10.1016/S0169-7439(98)00065-3

    Article  Google Scholar 

  50. Goos P, Jones B (2011) Optimal design of experiments: a case study approach. Wiley, Chichester

    Book  Google Scholar 

  51. Cheng SW, Wu CFJ (2001) Factor screening and response surface exploration. Stat Sin 11:553–604. https://doi.org/10.5705/ss.2012.210

    Article  MathSciNet  MATH  Google Scholar 

  52. Brightman HJ (1978) Optimization through experimentation: applying response surface methodology. Decis Sci 9(3):481–495. https://doi.org/10.1111/j.1540-5915.1978.tb00737.x

    Article  Google Scholar 

  53. Yücel Y, Göycincik S (2015) Optimization of ethanol production from spent tea waste by Saccharomyces cerevisiae using statistical experimental designs. Biomass Conversion and Biorefinery 5:247–255. https://doi.org/10.1007/s13399-014-0138-2

    Article  Google Scholar 

  54. Lin YC, Tsao CC, Hsu CY, Hung SK, Wen DC (2012) Evaluation of the characteristics of the microelectrical discharge machining process using response surface methodology based on the central composite design. Int J Adv Manuf Technol 62:1013–1023. https://doi.org/10.1007/s00170-011-3745-0

    Article  Google Scholar 

  55. Borkowski JJ (1995) Spherical prediction-variance properties of central composite and Box-Behnken designs. Technometrics 37(4):399–410. https://doi.org/10.2307/1269732

    Article  MathSciNet  MATH  Google Scholar 

  56. Duineveld CAA, Bruins CHP, Smilde AK, Bolhuis GK, Zuurman K, Doornbos DF (1994) Multicriteria steepest ascent. Chemom Intell Lab Syst 25(2):183–201. https://doi.org/10.1016/0169-7439(94)85042-9

    Article  Google Scholar 

  57. Forbes C, Evans M, Hastings N, Peacock B (2010) Statistical distributions, 4th edn. Wiley, Hoboken. https://doi.org/10.1002/9780470627242.ch20

    Book  MATH  Google Scholar 

  58. Hoerl RW (1985) Ridge analysis 25 years later. Am Stat 39(3):186–192. https://doi.org/10.2307/2683926

    Article  MathSciNet  Google Scholar 

  59. Zavadskas EK, Turskis Z (2010) A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol Econ Dev Econ 16(2):159–172. https://doi.org/10.3846/tede.2010.10

    Article  Google Scholar 

  60. Peterson JJ, Kuhn AM (2005) Ridge analysis with noise variables. Technometrics 47(3):274–283

    Article  MathSciNet  Google Scholar 

  61. Edwards JR (2007) Polynomial regression and response surface methodology. In: Ostroff C, Judge TA (eds) Perspectives on organizational fit. Jossey-Bass, San Francisco, pp 361–372

    Google Scholar 

  62. Lin DKJ, Peterson JJ (2006) Statistical inference for response surface optima. In: Khuri A (ed) Response Surface Methodology and related topics. World Scientific Publishing, Hackensack, pp 65–88

    Chapter  Google Scholar 

  63. Sambucini V (2012) Confidence regions for the stationary point of a quadratic response surface based on the asymptotic distribution of its MLE. Stat Comput 22(3):739–751. https://doi.org/10.1007/s11222-010-9202-3

    Article  MathSciNet  MATH  Google Scholar 

  64. Rao SS (2009) Engineering optimization: theory and practice, 4th edn. Wiley, Hoboken

    Book  Google Scholar 

  65. Deb K, Sindhya K, Hakanen J (2017) Multi-object/ive optimization. In: Sengupta RN, Gupta A, Dutta J (eds) Decision sciences: theory and practice. Taylor and Francis, Boca Raton, pp 146–179

    Google Scholar 

  66. Šaparauskas J, Zavadskas EK, Turskis Z (2011) Selection of facade’s alternatives of commercial and public buildings based on multiple criteria. Int J Strateg Prop Manag 15(2):189–203. https://doi.org/10.3846/1648715X.2011.586532

    Article  Google Scholar 

  67. Kant G, Sangwan KS (2014) Prediction and optimization of machining parameters for minimizing power consumption and surface roughness in machining. J Clean Prod 83:151–164. https://doi.org/10.1016/j.jclepro.2014.07.073

    Article  Google Scholar 

  68. Öktem H, Erzurumlu T, Kurtaran H (2005) Application of response surface methodology in the optimization of cutting conditions for surface roughness. J Mater Process Technol 170:11–16. https://doi.org/10.1016/j.jmatprotec.2005.04.096

    Article  Google Scholar 

  69. Kumar N, Mukherjee M, Bandyopadhyay A (2017) Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Opt Laser Technol 88:24–39. https://doi.org/10.1016/j.optlastec.2016.08.018

    Article  Google Scholar 

  70. Sudhagar S, Sakthivel M, Mathew PJ, Daniel SAA (2017) A multi criteria decision making approach for process improvement in friction stir welding of aluminium alloy. Measurement 108:1–8. https://doi.org/10.1016/j.measurement.2017.05.023

    Article  Google Scholar 

  71. Song X, Zhang M, Pei ZJ, Wang D (2014) Ultrasonic vibration-assisted pelleting of wheat straw: a predictive model for energy consumption using response surface methodology. Ultrasonics 54(1):305–311. https://doi.org/10.1016/j.ultras.2013.06.013

    Article  Google Scholar 

  72. Abuhabaya A, Fieldhouse J, Brown D (2013) The optimization of biodiesel production by using response surface methodology and its effect on compression ignition engine. Fuel Process Technol 113:57–62. https://doi.org/10.1016/j.fuproc.2013.03.025

    Article  Google Scholar 

  73. Gomes JHF, Paiva AP, Costa SC, Balestrassi PP, Paiva EJ (2013) Weighted multivariate mean square error for processes optimization: a case study on flux-cored arc welding for stainless steel claddings. Eur J Oper Res 226:522–535. https://doi.org/10.1016/j.ejor.2012.11.042

    Article  Google Scholar 

  74. Paiva AP, Paiva EJ, Ferreira JR, Balestrassi PP, Costa SC (2009) A multivariate mean square error optimization of AISI 52100 hardened steel turning. Int J Adv Manuf Technol 43:631–643. https://doi.org/10.1007/s00170-008-1745-5

    Article  Google Scholar 

  75. Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 6th edn. Pearson Prentice Hall, New Jersey

    MATH  Google Scholar 

  76. Kumara C, Dasa M, Paul CP, Singh B (2017) Experimental investigation and metallographic characterization of fiber laser beam welding of Ti-6Al-4V alloy using response surface method. Opt Lasers Eng 95:52–68. https://doi.org/10.1016/j.optlaseng.2017.03.013

    Article  Google Scholar 

  77. Đặng TH, Chen BH, Lee DJ (2017) Optimization of biodiesel production from transesterification of triolein using zeolite LTA catalysts synthesized from kaolin clay. J Taiwan Inst Chem Eng 79:1–9. https://doi.org/10.1016/j.jtice.2017.03.009

    Article  Google Scholar 

  78. Azam M, Jahanzaib M, Wasim A, Hussain S (2015) Surface roughness modeling using RSM for HSLA steel by coated carbide tools. Int J Adv Manuf Technol 78:1031–1041. https://doi.org/10.1007/s00170-014-6707-5

    Article  Google Scholar 

  79. Bajíc D, Lela B, Živković D (2008) Modeling of machined surface roughness and optimization of cutting parameters in face milling. Metalurgija 47(4):331–334

    Google Scholar 

  80. Mia M, Khan MA, Dhar NR (2017) High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on surface roughness and tool wear. Int J Adv Manuf Technol 90(5):1825–1834. https://doi.org/10.1007/s00170-016-9512-5

    Article  Google Scholar 

  81. Rocha LCS, Paiva AP, Paiva EJ, Balestrassi PP (2015) Comparing DEA and principal component analysis in the multiobjective optimization of P-GMAW process. J Braz Soc Mech Sci Eng 38:2513–2526. https://doi.org/10.1007/s40430-015-0355-z

    Article  Google Scholar 

  82. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Norwell

    MATH  Google Scholar 

  83. Bratchell N (1989) Multivariate response surface modelling by principal components analysis. J Chemom 3:579–588. https://doi.org/10.1002/cem.1180030406

    Article  Google Scholar 

  84. Purkayastha MD, Barthakur A, Mahanta CL (2015) Production of vegetable protein from rapeseed press-cake using response surface methodology, weighted multivariate index, and desirability function: a way to handle correlated multiple responses. Int J Food Prop 18:1248–1271. https://doi.org/10.1080/10942912.2014.891612

    Article  Google Scholar 

  85. Gomes JHF, Salgado Júnior AR, Paiva AP, Ferreira JR, Costa SC, Balestrassi PP (2012) Global criterion method based on principal components to the optimization of manufacturing processes with multiple responses. J Mech Eng 58(5):345–353. https://doi.org/10.5545/sv-jme.2011.136

    Article  Google Scholar 

  86. Routara BC, Mohanty SD, Datta S, Bandyopadhyay A, Mahapatra SS (2010) Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. Int J Adv Manuf Technol 51:135–143. https://doi.org/10.1007/s00170-010-2599-1

    Article  Google Scholar 

  87. Salmasnia A, Kazemzadeh RB, Seyyed-Esfahani M, Hejazi TH (2013) Multiple response surface optimization with correlated data. Int J Adv Manuf Technol 64:841–855. https://doi.org/10.1007/s00170-012-4056-9

    Article  Google Scholar 

  88. Chadegani AA, Salehi H, Yunus MM, Farhadi H, Fooladi M, Farhadi M, Ebrahim NA (2013) A comparison between two main academic literature collections: Web of Science and Scopus Databases. Asian Soc Sci 9(5):18–26. https://doi.org/10.5539/ass.v9n5p18

    Article  Google Scholar 

  89. Guz AN, Rushchitsky JJ (2009) Scopus: a system for the evaluation of scientific journals. Int Appl Mech 45(4):351–362. https://doi.org/10.1007/s10778-009-0189-4

    Article  MathSciNet  Google Scholar 

  90. Omrani E, Moghadam AD, Menezes PL, Rohatgi PK (2016) Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency – a review. Int J Adv Manuf Technol 83:325–346. https://doi.org/10.1007/s00170-015-7528-x

    Article  Google Scholar 

  91. Pakseresht AH, Javadi AH, Nejati M, Shirvanimoghaddam K, Ghasali E, Teimouri R (2014) Statistical analysis and multiobjective optimization of process parameters in plasma spraying of partially stabilized zirconia. Int J Adv Manuf Technol 75:739–753. https://doi.org/10.1007/s00170-014-6169-9

    Article  Google Scholar 

  92. Khoran M, Ghabezi P, Frahani M, Besharati MK (2015) Investigation of drilling composite sandwich structures. Int J Adv Manuf Technol 76:1927–1936. https://doi.org/10.1007/s00170-014-6427-x

    Article  Google Scholar 

  93. Aggarwal V, Khangura SS, Garg RK (2015) Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. Int J Adv Manuf Technol 79:31–47. https://doi.org/10.1007/s00170-015-6797-8

    Article  Google Scholar 

  94. Mahesh G, Muthu S, Devadasan SR (2016) Prediction of surface roughness of end milling operation using genetic algorithm. Int J Adv Manuf Technol 77:369–381. https://doi.org/10.1007/s00170-014-6425-z

    Article  Google Scholar 

  95. Amdouni H, Bouzaiene H, Montagne A, Nasri M, Iost A (2017) Modeling and optimization of a ball-burnished aluminum alloy flat surface with a crossed strategy based on response surface methodology. Int J Adv Manuf Technol 88:801–814. https://doi.org/10.1007/s00170-016-8817-8

    Article  Google Scholar 

  96. Meddour I, Yallese MA, Khattabi R, Elbah M, Boulanouar L (2015) Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. Int J Adv Manuf Technol 77:1387–1399. https://doi.org/10.1007/s00170-014-6559-z

    Article  Google Scholar 

  97. Araby S, Zaied R, Haridy S, Kaytbay S (2017) Grooves into cylindrical shapes by wire electrochemical machining. Int J Adv Manuf Technol 90:445–455. https://doi.org/10.1007/s00170-016-9389-3

    Article  Google Scholar 

  98. Rajesh P, Nagaraju U, Gowd GH, Vardhan TV (2015) Experimental and parametric studies of Nd:YAG laser drilling on austenitic stainless steel. Int J Adv Manuf Technol 93:65–71. https://doi.org/10.1007/s00170-015-7639-4

    Article  Google Scholar 

  99. Ayyappan S, Sivakumar K (2014) Experimental investigation on the performance improvement of electrochemical machining process using oxygen-enriched electrolyte. Int J Adv Manuf Technol 75:479–487. https://doi.org/10.1007/s00170-014-6096-9

    Article  Google Scholar 

  100. Rocha LCS, Paiva AP, Rotela Junior P, Balestrassi PP, Campos PHS (2017) Robust multiple criteria decision making applied to optimization of AISI H13 hardened steel turning with PCBN wiper tool. Int J Adv Manuf Technol 89:2251–2268. https://doi.org/10.1007/s00170-016-9250-8

    Article  Google Scholar 

  101. Sonawane HA, Joshi SS (2015) Modeling of machined surface quality in high-speed ball-end milling of Inconel-718 thin cantilevers. Int J Adv Manuf Technol 78:1751–1768. https://doi.org/10.1007/s00170-014-6759-6

    Article  Google Scholar 

  102. Costa DMD, Paula TI, Silva PAP, Paiva AP (2016b) Normal boundary intersection method based on principal components and Taguchi’s signal-to-noise ratio applied to the multiobjective optimization of 12L14 free machining steel turning process. Int J Adv Manuf Technol 87:825–834. https://doi.org/10.1007/s00170-016-8478-7

    Article  Google Scholar 

  103. Sundararaman KA, Guharaja S, Padmanaban KP, Sabareeswaran M (2014) Design and optimization of machining fixture layout for end-milling operation. Int J Adv Manuf Technol 73:669–679. https://doi.org/10.1007/s00170-014-5848-x

    Article  Google Scholar 

  104. Daoud M, Jomaa W, Chatelain JF, Bouzid A (2015) A machining-based methodology to identify material constitutive law for finite element simulation. Int J Adv Manuf Technol 77:2019–2033. https://doi.org/10.1007/s00170-014-6583-z

    Article  Google Scholar 

  105. Varun A, Venkaiah N (2015) Simultaneous optimization of WEDM responses using grey relational analysis coupled with genetic algorithm while machining EN 353. Int J Adv Manuf Technol 76:675–690. https://doi.org/10.1007/s00170-014-6198-4

    Article  Google Scholar 

  106. Hashmi KH, Zakria G, Raza MB, Khalil S (2016) Optimization of process parameters for high speed machining of Ti-6Al-4V using response surface methodology. Int J Adv Manuf Technol 85:1847–1856. https://doi.org/10.1007/s00170-015-8057-3

    Article  Google Scholar 

  107. Verma GC, Kala P, Pandey PM (2017) Experimental investigations into internal magnetic abrasive finishing of pipes. Int J Adv Manuf Technol 88:1657–1668. https://doi.org/10.1007/s00170-016-8881-0

    Article  Google Scholar 

  108. Hourmand M, Farahany S, Sarhan AAD, Noordin MY (2015) Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int J Adv Manuf Technol 77:831–838. https://doi.org/10.1007/s00170-014-6491-2

    Article  Google Scholar 

  109. Yilmaz O, Bozdana AT, Okka MA (2014) An intelligent and automated system for electrical discharge drilling of aerospace alloys: Inconel 718 and Ti-6Al-4V. Int J Adv Manuf Technol 74:1323–1336. https://doi.org/10.1007/s00170-014-6059-1

    Article  Google Scholar 

  110. Jain AK, Pandey PM (2016) Experimental studies on tool wear in μ-RUM process. Int J Adv Manuf Technol 85:2125–2138. https://doi.org/10.1007/s00170-015-8248-y

    Article  Google Scholar 

  111. Yue Z, Huang C, Zhu H, Wang J, Yao P, Liu Z (2014) Optimization of machining parameters in the abrasive waterjet turning of alumina ceramic based on the response surface methodology. Int J Adv Manuf Technol 71:2107–2114. https://doi.org/10.1007/s00170-014-5624-y

    Article  Google Scholar 

  112. Liu JW, Baek DK, Ko TJ (2014a) Chipping minimization in drilling ceramic materials with rotary ultrasonic machining. Int J Adv Manuf Technol 72:1527–1535. https://doi.org/10.1007/s00170-014-5766-y

    Article  Google Scholar 

  113. Zhao T, Shi Y, Lin X, Duan J, Sun P, Zhang J (2014) Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine. Int J Adv Manuf Technol 74:653–663. https://doi.org/10.1007/s00170-014-6020-3

    Article  Google Scholar 

  114. Liu Z, Wang C, Chen M, Ge C, Li M (2014b) A coupling response surfaces methodology of multiple constraints (CRSMMC) for parameters optimization of broach tool in broaching of heat-resistant steel X12CrMoWVNb N-10-1-1. Int J Adv Manuf Technol 74:1719–1732. https://doi.org/10.1007/s00170-014-6109-8

    Article  Google Scholar 

  115. Zhou Y, Gong Y, Zhu Z, Gao Q, Wen X (2016) Modelling and optimisation of surface roughness from microgrinding of nickel-based single crystal superalloy using the response surface methodology and genetic algorithm. Int J Adv Manuf Technol 85:2607–2622. https://doi.org/10.1007/s00170-015-8121-z

    Article  Google Scholar 

  116. Ahmadnia M, Shahraki S, Kamarposhti MA (2016) Experimental studies on optimized mechanical properties while dissimilar joining AA6061 and AA5010 in a friction stir welding process. Int J Adv Manuf Technol 87:2337–2352. https://doi.org/10.1007/s00170-016-8636-y

    Article  Google Scholar 

  117. Ramachandran KK, Murugan N, Kumar SS (2016) Performance analysis of dissimilar friction stir welded aluminium alloy AA5052 and HSLA steel butt joints using response surface method. Int J Adv Manuf Technol 86:2373–2392. https://doi.org/10.1007/s00170-016-8337-6

    Article  Google Scholar 

  118. Hasan MM, Ishak M, Rejab MRM (2017) Influence of machine variables and tool profile on the tensile strength of dissimilar AA7075-AA6061 friction stir welds. Int J Adv Manuf Technol 90:2605–2615. https://doi.org/10.1007/s00170-016-9583-3

    Article  Google Scholar 

  119. Safeen W, Hussain S, Wasim A, Jahanzaib M, Aziz H, Abdalla H (2016) Predicting the tensile strength, impact toughness, and hardness of friction stir-welded AA6061-T6 using response surface methodology. Int J Adv Manuf Technol 87:1765–1781. https://doi.org/10.1007/s00170-016-8565-9

    Article  Google Scholar 

  120. Jahanzaib M, Hussain S, Wasim A, Aziz H, Mirza A, Ullah S (2017) Modeling of weld bead geometry on HSLA steel using response surface methodology. Int J Adv Manuf Technol 89:2087–2098. https://doi.org/10.1007/s00170-016-9213-0

    Article  Google Scholar 

  121. Shi H, Zhang K, Xu Z, Huang T, Fan L, Bao W (2014) Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire. Int J Adv Manuf Technol 75:279–291. https://doi.org/10.1007/s00170-014-6159-y

    Article  Google Scholar 

  122. Korra NN, Vasudevan M, Balasubramanian KR (2015) Multi-objective optimization of activated tungsten inert gas welding of duplex stainless steel using response surface methodology. Int J Adv Manuf Technol 77:67–81. https://doi.org/10.1007/s00170-014-6426-y

    Article  Google Scholar 

  123. Winiczenko R (2016) Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM A536 joints. Int J Adv Manuf Technol 84:1657–1668. https://doi.org/10.1007/s00170-015-7751-5

    Article  Google Scholar 

  124. Lotfi AH, Nourouzi S (2014) Predictions of the optimized friction stir welding process parameters for joining AA7075-T6 aluminum alloy using preheating system. Int J Adv Manuf Technol 73:1717–1737. https://doi.org/10.1007/s00170-014-5963-8

    Article  Google Scholar 

  125. Xu WH, Lin SB, Fan CL, Zhuo XQ, Yang CL (2014) Statistical modelling of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int J Adv Manuf Technol 72:1705–1716. https://doi.org/10.1007/s00170-014-5799-2

    Article  Google Scholar 

  126. Mostaan H, Shamanian M, Safari M (2016) Process analysis and optimization for fracture stress of electron beam welded ultra-thin FeCo-V foils. Int J Adv Manuf Technol 87:1045–1056. https://doi.org/10.1007/s00170-016-8553-0

    Article  Google Scholar 

  127. Zhao S, Bi Q, Wang Y, Shi J (2017) Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction stir-welded 2219-T87 aluminum alloy. Int J Adv Manuf Technol 90:1105–1118. https://doi.org/10.1007/s00170-016-9450-2

    Article  Google Scholar 

  128. Mostafapour A, Ebrahimpour A, Saeid T (2017) Finite element investigation on the effect of FSSW parameters on the size of welding subdivided zones in TRIP steels. Int J Adv Manuf Technol 88:277–289. https://doi.org/10.1007/s00170-016-8749-3

    Article  Google Scholar 

  129. Cai Y, Wang XS, Yuan SJ (2016) Pre-form design for hydro-forming of aluminum alloy automotive cross members. Int J Adv Manuf Technol 86:463–473. https://doi.org/10.1007/s00170-015-8160-5

    Article  Google Scholar 

  130. Maji K, Pratihar DK, Nath AK (2016) Experimental investigations, modeling, and optimization of multi-scan laser forming of AISI 304 stainless steel sheet. Int J Adv Manuf Technol 83:1441–1455. https://doi.org/10.1007/s00170-015-7675-0

    Article  Google Scholar 

  131. Guo W, Hua L, Mao H (2014) Minimization of sink mark depth in injection-molded thermoplastic through design of experiments and genetic algorithm. Int J Adv Manuf Technol 72:365–375. https://doi.org/10.1007/s00170-013-5603-8

    Article  Google Scholar 

  132. Pakseresht AH, Ghasali E, Nejati M, Shirvanimoghaddam K, Javadi AH, Teimouri R (2015) Development empirical-intelligent relationship between plasma spray parameters and coating performance of yttria-stabilized zirconia. Int J Adv Manuf Technol 76:1031–1045. https://doi.org/10.1007/s00170-014-6212-x

    Article  Google Scholar 

  133. Hassan MH, Othman AR, Kamaruddin S (2017) The use of response surface methodology (RSM) to optimize the acid digestion parameters in fiber volume fraction test of aircraft composite structures. Int J Adv Manuf Technol 90:3739–3748. https://doi.org/10.1007/s00170-016-9683-0

    Article  Google Scholar 

  134. Rajakumar S, Balasubramanian V (2016) Diffusion bonding of titanium and AA 7075 aluminum alloy dissimilar joints—process modeling and optimization using desirability approach. Int J Adv Manuf Technol 86:1095–1112. https://doi.org/10.1007/s00170-015-8223-7

    Article  Google Scholar 

  135. Hosseinzadeh M, Mouziraji MG (2016) An analysis of tube drawing process used to produce squared sections from round tubes through FE simulation and response surface methodology. Int J Adv Manuf Technol 87:2179–2194. https://doi.org/10.1007/s00170-016-8532-5

    Article  Google Scholar 

  136. Zhang WW, Cong S (2016) Failure analysis of SUS304 sheet during hydro-bulging based on GTN ductile damage model. Int J Adv Manuf Technol 86:427–435. https://doi.org/10.1007/s00170-015-8199-3

    Article  Google Scholar 

  137. Huang C, Radi B, Hami A (2016) Uncertainty analysis of deep drawing using surrogate model based probabilistic method. Int J Adv Manuf Technol 86:3229–3240. https://doi.org/10.1007/s00170-016-8436-4

    Article  Google Scholar 

  138. Zhang P, Kou S, Lin B, Wang Y (2015) Optimization for radial knurling connection process of assembled camshaft using response surface method. Int J Adv Manuf Technol 77:653–661. https://doi.org/10.1007/s00170-014-6486-z

    Article  Google Scholar 

  139. Liu S, Kovacevic R (2014) Statistical analysis and optimization of processing parameters in high-power direct diode laser cladding. Int J Adv Manuf Technol 74:867–878. https://doi.org/10.1007/s00170-014-6041-y

    Article  Google Scholar 

  140. Zhang WW, Han C, Yuan SJ (2016) Optimization of pre-form shapes by response surface methodology for hydro-forming of 780 MPa torsion beam. Int J Adv Manuf Technol 85:1227–1237. https://doi.org/10.1007/s00170-015-8043-9

    Article  Google Scholar 

  141. Campos PHS (2015) DEA-OTS methodology: a contribution to the optimum selection of tools in the turning of hardened ABNT H13. Doctoral Dissertation, Federal University of Itajuba, Brazil

  142. Pereira RBD, Leite RR, Alvim AC, Paiva AP, Balestrassi PP, Ferreira JR, Davim JP (2018) Multivariate robust modeling and optimization of cutting forces of the helical milling process of the aluminum alloy al 7075. Int J Adv Manuf Technol 95:2691–2715. https://doi.org/10.1007/s00170-017-1398-3

    Article  Google Scholar 

  143. Gaudêncio JHD, Almeida FA, Turrioni JB, Quinino RC, Balestrassi PP, Paiva AP (2019) A multiobjective optimization model for machining quality in the AISI 12L14 steel turning process using fuzzy multivariate mean square error. Precis Eng. https://doi.org/10.1016/j.precisioneng.2019.01.001

    Article  Google Scholar 

  144. Naves FL, Paula TI, Balestrassi PP, Moreira Braga WL, Sawhney RS, Paiva AP (2017b) Multivariate normal boundary intersection based on rotated factor scores: a multiobjective optimization method for methyl orange treatment. J Clean Prod 143:413–439. https://doi.org/10.1016/j.jclepro.2016.12.092

    Article  Google Scholar 

  145. Paiva AP, Gomes JHF, Peruchi RS, Leme RC, Balestrassi PP (2014) A multivariate robust parameter optimization approach based on principal component analysis with combined arrays. Comput Ind Eng 74:186–198

    Article  Google Scholar 

Download references

Acknowledgements

The authors also would like to acknowledge Prof. Ph.D. João Paulo Davim Tavares da Silva from the University of Aveiro, Portugal, who allowed and sponsored the consecution of experimental data set, the Foundation of Support Research of the State of Minas Gerais (FAPEMIG), and the anonymous reviewer for the careful reading of our paper and for the positive comments and suggestions.

Funding

This paper is supported by the Coordination for the Improvement of Higher Education Personnel (CAPES), through doctoral scholarships and project CAPES 9801-12.0 and the National Council for Scientific and Technological Development (CNPq) through projects CNPq 303586/2015-0 and CNPq 409318/2017-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Paulo Balestrassi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, L.G., de Paiva, A.P., Balestrassi, P.P. et al. Response surface methodology for advanced manufacturing technology optimization: theoretical fundamentals, practical guidelines, and survey literature review. Int J Adv Manuf Technol 104, 1785–1837 (2019). https://doi.org/10.1007/s00170-019-03809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03809-9

Keywords

Navigation