Skip to main content
Log in

Tool vibration in internal turning of hardened steel using cBN tool

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The machining of hardened materials with hardness over 45 HRC has been an alternative to grinding since the 1970s, with the commercial availability of cubic boron nitride (cBN) and ceramic tools. However, the low toughness of these types of tool materials makes them very sensitive to damages caused by vibrations, which are critical for operations like internal turning, where the tool resembles a cantilever beam and therefore is susceptible to large deflections. This work aims to contribute to the study of tool performance in internal turning of long holes in hardened AISI 4340 steel in finishing conditions. Different machining conditions, two different tool holders (steel and carbide), and several tool overhangs were tested. The surface finish, acceleration (vibration) signals, and tool wear of cBN inserts were evaluated. The results show that vibration and the material of the tool holder may play a secondary role in the surface finish for stable turning, but the use of carbide tool holders makes the process stable for longer tool overhangs. Moreover, when the cutting becomes unstable, surface roughness is increased severely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann Manuf Technol 54(2):22–45. doi:10.1016/S0007-8506(07)60018-3

    Article  Google Scholar 

  2. Bartarya G, Choudhury SK (2012) State of the art in hard turning. Int J Mach Tools Manuf 53:1–14. doi:10.1016/j.ijmachtools.2011.08.019

    Article  Google Scholar 

  3. Huddle D (2001) New hard turning tools and techniques offer a cost-effective alternative to grinding. Tooling Prod Mag 80:96–103

    Google Scholar 

  4. Dogra M, Sharma VS, Sachdeva A, Suri NM, Dureja JS (2010) Tool wear, chip formation and workpiece surface issues in CBN hard turning: a review. Int J Precis Eng Manuf 11(2):341–358. doi:10.1007/s12541-010-0040-1

    Article  Google Scholar 

  5. Chinchanikar S, Choudhury SK (2015) Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review. Int J Mach Tools Manuf 89:95–109. doi:10.1016/j.ijmachtools.2014.11.002

    Article  Google Scholar 

  6. Oliveira AJ, Diniz AE, Ursolino DJ (2009) Hard turning in continuous and interrupted cut with PCBN and whisker-reinforced cutting tools. J Mater Process Technol 209:5262–5270. doi:10.1016/j.jmatprotec.2009.03.012

    Article  Google Scholar 

  7. Godoy VAA, Diniz AE (2011) Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools. J Mater Process Technol 211:1014–1025. doi:10.1016/j.jmatprotec.2011.01.002

    Article  Google Scholar 

  8. Tönshoff HK, Arendt C, Ben Amor R (2000) Cutting of hardened steel. CIRP Ann 49(2):547–566. doi:10.1016/S0007-8506(07)63455-6

    Article  Google Scholar 

  9. Diniz AE, Gomes DM, Braghini A Jr (2005) Turning of hardened steel with interrupted and semi-interrupted cutting. J Mater Process Technol 159:240–248. doi:10.1016/j.jmatprotec.2004.05.011

    Article  Google Scholar 

  10. Altintas Y (2000) Static and dynamic deformations in machining. In: Altintas Y (ed) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New York, pp 65–121

    Google Scholar 

  11. Rivin EI, Kang H (1992) Enhancement of dynamic stability of cantilever tooling structures. Int J Mach Tools Manuf 32(4):539–561. doi:10.1016/0890-6955(92)90044-H

    Article  Google Scholar 

  12. Akesson H, Smirnova T, Hahansson L (2009) Analysis of dynamic properties of boring bars concerning different clamping conditions. Mech Syst Signal Process 23:2629–22647. doi:10.1016/j.ymssp.2009.05.012

    Article  Google Scholar 

  13. Andrén L, Hakansson L, Brandt A, Claesson I (2004) Identification of dynamic properties of boring bar vibrations in a continuous boring operation. Mech Syst Signal Process 18:869–901. doi:10.1016/S0888-3270(03)00093-1

    Article  Google Scholar 

  14. Atabey F, Lazoglu I, Altintas Y (2003) Mechanics of boring processes—part I. Int J Mach Tools Manuf 43:463–746. doi:10.1016/S0890-6955(02)00276-6

    Article  Google Scholar 

  15. Sortino M, Totis G, Prosperi F (2012) Development of a practical model for selection of stable tooling system configuration in internal turning. Int J Mach Tools Manuf 61:58–70. doi:10.1016/j.ijmachtools.2012.05.010

    Article  Google Scholar 

  16. Kiyak M, Kaner B, Sahin I, Aldemir B, Cakir O (2010) The dependence of tool overhang on surface quality and tool wear in the turning process. Int J Adv Manuf Technol 51(5):431–438. doi:10.1007/s00170-010-2654-y

    Article  Google Scholar 

  17. Selvam MS (1975) Tool vibration and its influence on surface roughness in turning. Wear 35(1):149–157. doi:10.1016/0043-1648(75)90149-0

    Article  Google Scholar 

  18. Miguélez MH, Rubio L, Loya JA, Fernández-Sáez J (2010) Improvement of chatter stability in boring operations with passive vibration absorbers. Int J Mech Sci 52:1376–1384. doi:10.1016/j.ijmecsci.2010.07.003

    Article  Google Scholar 

  19. Tobias SA (1964) Vibration of machine tools. Prod Eng 43(12):599–608. doi:10.1049/tpe.1964.0084

    Article  Google Scholar 

  20. Coromant S (2015) Turning tools. Sandvik, Sandviken

    Google Scholar 

  21. Diniz AE, Marcondes FC, Coppini NL (2013) Avarias e Desgastes da Ferramenta. In: Diniz AE, Marcondes FC, Coppini NL (eds) Tecnologia da Usinagem dos Materiais, 8th edn. Artilber, São Paulo, pp 107–118

    Google Scholar 

  22. Hessainia Z, Belbah A, Yallese MA, Mabrouki T, Rigal J (2013) On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement 46:1671–1681. doi:10.1016/j.measurement.2012.12.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Suyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suyama, D.I., Diniz, A.E. & Pederiva, R. Tool vibration in internal turning of hardened steel using cBN tool. Int J Adv Manuf Technol 88, 2485–2495 (2017). https://doi.org/10.1007/s00170-016-8964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8964-y

Keywords

Navigation