Skip to main content
Log in

A review on resistance spot welding of magnesium alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a review on resistance spot welding of magnesium alloys, with emphasis on the relationship between microstructure, properties, and performance, under quasi-static and dynamic loading conditions. It also compares the resistance spot welding of magnesium-to-aluminum alloys and the various techniques used to suppress the formation of brittle intermetallic compounds. Resistance spot welding of magnesium-to-steel, weld bonding, the effects of process parameters on joint quality, and the main metallurgical defects in resistance spot welding of magnesium alloys are also deliberated. Studies have shown that the pre-existence of coarse second phase particles in the base metal, the addition of particles, such as titanium powder, and welding under the influence of electromagnetic stirring effect can promote columnar-to-equiaxed transition, microstructure refinement, and improvement in mechanical properties of magnesium alloys resistance spot welds. For magnesium-to-aluminum alloys spot welds, the use of interlayers, such as pure nickel, gold-coated nickel foil, and zinc-coated steel, was found to suppress the formation of brittle intermetallic compounds and thus significantly improve the joint strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D’Errico F, Plaza GG, Giger F, Kim SK (2013) Final assessment of preindustrial solid-state route for high-performance Mg-system alloys production: concluding the EU green metallurgy project. JOM 65(10):1293–1302

    Article  Google Scholar 

  2. D’Errico F, Ranza L (2015) Comparative environmental benefits of lightweight design in the automotive sector: the case study of recycled magnesium against CFRP and steel. Paper presented at the Magnesium Technology 2015

  3. Orłowicz A, Mróz M, Tupaj M, Trytek A (2015) Materials used in the automotive industry. Arch Foundry Eng 15(2):75–78

    Google Scholar 

  4. Luo AA (2013) 8 - Applications: aerospace, automotive and other structural applications of magnesium. In: Pekguleryuz MO, Kainer KU, Kaya AA (eds) Fundamentals of magnesium alloy metallurgy. Woodhead Publishing, Cambridge, pp. 266–316

  5. Palanivel S, Nelaturu P, Glass B, Mishra R (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des 65:934–952

    Article  Google Scholar 

  6. Liu L (2010) 1 - Introduction to the welding and joining of magnesium. In: Liu L (ed) Welding and joining of magnesium alloys. Woodhead Publishing, Cambridge, pp. 3–8

  7. Zhang LJ, Zhang XJ, Ning J, Zhang JX (2015) Modulated fiber laser welding of high reflective AZ31. Int J Adv Manuf Tech 76(1-4):721–733

    Article  Google Scholar 

  8. Patel VK, Bhole SD, Chen DL (2013) Formation of zinc interlayer texture during dissimilar ultrasonic spot welding of magnesium and high strength low alloy steel. Mater Des 45:236–240

    Article  Google Scholar 

  9. Zhao Y, Lu ZP, Yan K, Huang LZ (2015) Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Mater Des 65:675–681

    Article  Google Scholar 

  10. Zhang N, Wang WX, Cao XQ, Wu JQ (2015) The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding. Mater Des 65:1100–1109

    Article  Google Scholar 

  11. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9-10):851–865

    Article  Google Scholar 

  12. Qiu R, Wang N, Shi H, Zhang K, Satonaka S (2014) Non-parametric effects on pore formation during resistance spot welding of magnesium alloy. Sci Technol Weld Joining 19(3):231–234

    Article  Google Scholar 

  13. Li L, Tan C, Chen Y, Guo W, Mei C (2013) CO 2 laser welding–brazing characteristics of dissimilar metals AZ31B Mg alloy to Zn coated dual phase steel with Mg based filler. J Mater Process Technol 213(3):361–375

    Article  Google Scholar 

  14. Babu NK, Brauser S, Rethmeier M, Cross C (2012) Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy. Mater Sci Eng, A 549:149–156

    Article  Google Scholar 

  15. Cole G Magnesium vision 2020—a North American automotive strategic vision for magnesium. In: IMA proceedings, 2007. International Magnesium Association, p. 13

  16. Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloys 1(1):2–22

    Article  Google Scholar 

  17. Alizadeh-Sh M, Marashi SPH, Pouranvari M (2014) Resistance spot welding of AISI 430 ferritic stainless steel: phase transformations and mechanical properties. Mater Des 56:258–263

    Article  Google Scholar 

  18. Charde N, Yusof F, Rajkumar R (2014) Material characterizations of mild steels, stainless steels, and both steel mixed joints under resistance spot welding (2-mm sheets). Int J Adv Manuf Tech 75(1-4):373–384

    Article  Google Scholar 

  19. Eshraghi M, Tschopp MA, Zaeem MA, Felicelli SD (2014) Effect of resistance spot welding parameters on weld pool properties in a DP600 dual-phase steel: a parametric study using thermomechanically-coupled finite element analysis. Mater Des 56:387–397

    Article  Google Scholar 

  20. Baca N, Ngo TT, Conner RD, Garrett SJ (2013) Small scale resistance spot welding of Cu47Ti34Zr11Ni8 (Vitreloy 101) bulk metallic glass. J Mater Process Technol 213(11):2042–2048

    Article  Google Scholar 

  21. Li YB, Wei ZY, Li YT, Shen Q, Lin ZQ (2013) Effects of cone angle of truncated electrode on heat and mass transfer in resistance spot welding. Int J Heat Mass Tran 65:400–408

    Article  Google Scholar 

  22. Niknejad S, Liu L, Lee MY, Esmaeili S, Zhou NY (2014) Resistance spot welding of AZ series magnesium alloys: effects of aluminum content on microstructure and mechanical properties. Mat Sci Eng a-Struct 618:323–334

    Article  Google Scholar 

  23. Wei PS, Wu TH Nugget shape control in resistance spot welding. In: Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International, 2013. IEEE, pp 283-285

  24. Cukovic JP, Klopcic B, Petrun M, Polajzer B, Dolinar D (2014) Optimization of resistance spot welding transformer windings using analytical successive approximation and differential evolution. Ieee T Magn 50(4)

  25. Florea RS, Bammann DJ, Yeldell A, Solanki KN, Hammi Y (2013) Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy. Mater Des 45:456–465

    Article  Google Scholar 

  26. Hassanifard S, Feyzi M (2015) Analytical solution of temperature distribution in resistance spot welding. J Mech Sci Technol 29(2):777–784

    Article  Google Scholar 

  27. Hamidinejad SM, Kolahan F, Kokabi AH (2012) The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing. Mater Des 34:759–767

    Article  Google Scholar 

  28. Hayat F (2011) The effects of the welding current on heat input, nugget geometry, and the mechanical and fractural properties of resistance spot welding on Mg/Al dissimilar materials. Mater Des 32(4):2476–2484

    Article  Google Scholar 

  29. Pouranvari M, Marashi S (2013) Critical review of automotive steels spot welding: process, structure and properties. Sci Technol Weld Joining 18(5):361–403

    Article  Google Scholar 

  30. Satonaka S, Iwamoto C, Murakami GI, Matsumoto Y (2012) Resistance spot welding of magnesium alloy sheets with cover plates. Weld World 56(7-8):44–50

    Article  Google Scholar 

  31. Wei PS, Wu TH, Chen LJ (2013) Joint quality affected by electrode contact condition during resistance spot welding, components, packaging and manufacturing technology. IEEE Trans 3(12):2164–2173

    Google Scholar 

  32. Liu L, Feng J, Zhou Y (2010) 18 - Resistance spot welding of magnesium alloys. In: Liu L (ed) Welding and joining of magnesium alloys. Woodhead Publishing, Cambridge, pp. 351–367e

  33. Qiu RF, Satonaka S, Iwamoto C (2009) Mechanical properties and microstructures of magnesium alloy AZ31B joint fabricated by resistance spot welding with cover plates. Sci Technol Weld Joining 14(8):691–697

    Article  Google Scholar 

  34. Wang Y, Mo Z, Feng J, Zhang Z (2007) Effect of welding time on microstructure and tensile shear load in resistance spot welded joints of AZ31 Mg alloy. Sci Technol Weld Join 12(8):671–676

    Article  Google Scholar 

  35. Zhang H, Senkara J (2011) Resistance welding: fundamentals and applications. CRC Press, Boca Raton

  36. Williams N, Parker J (2004) Review of resistance spot welding of steel sheets part 1 modelling and control of weld nugget formation. Int Mater Rev 49(2):45–75

    Article  Google Scholar 

  37. Qiu RF, Shi HX, Yu H, Zhang KK, Tu YM, Satonaka S (2010) Effects of electrode force on the characteristic of magnesium alloy joint welded by resistance spot welding with cover plates. Mater Manuf Process 25(11):1304–1308

    Article  Google Scholar 

  38. RWMA (2003) Resistance welding manual. Resistance Welder Manufacturer’s Association, Philadelphia

    Google Scholar 

  39. Liu L (2010) 3—Preparation for welding of magnesium alloys. In: Liu L (ed) Welding and joining of magnesium alloys. Woodhead Publishing, Cambridge, pp. 16–22

  40. Liu L, Zhou S, Tian Y, Feng J, Jung J, Zhou Y (2009) Effects of surface conditions on resistance spot welding of Mg alloy AZ31. Sci Technol Weld Join 14(4):356–361

    Article  Google Scholar 

  41. Zhou S, Liu L, Jung JP, Lee M-Y, Zhou YN (2010) Effects of welding parameters and surface pretreatments on resistance spot welding of AZ31B Mg alloy. Met Mater Int 16(6):967–974

    Article  Google Scholar 

  42. Behravesh SB, Jahed H, Lambert S (2011) Characterization of magnesium spot welds under tensile and cyclic loadings. Mater Des 32(10):4890–4900

    Article  Google Scholar 

  43. Xiao L, Liu L, Esmaeili S, Zhou Y (2012) Microstructure refinement after the addition of titanium particles in AZ31 magnesium alloy resistance spot welds. Metal Mater Trans A 43(2):598–609

    Article  Google Scholar 

  44. Niknejad ST, Liu L, Nguyen T, Lee M-Y, Esmaeili S, Zhou NY (2013) Effects of heat treatment on grain-boundary β-Mg17Al12 and fracture properties of resistance spot-welded AZ80 Mg alloy. Metal Mater Trans A 44(8):3747–3756

    Article  Google Scholar 

  45. Xu W, Liu L, Zhou Y, Mori H, Chen D (2013) Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints. Mater Sci Eng, A 563:125–132

    Article  Google Scholar 

  46. Feng JC, Wang YR, Zhang ZD (2006) Nugget growth characteristic for AZ(31)B magnesium alloy during resistance spot welding. Sci Technol Weld Joining 11(2):154–162

    Article  Google Scholar 

  47. Wang Y, Feng J, Zhang Z (2006) Microstructure characteristics of resistance spot welds of AZ31 Mg alloy. Sci Technol Weld Join 11(5):555–560

    Article  Google Scholar 

  48. Xiao L, Liu L, Chen DL, Esmaeili S, Zhou Y (2011) Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy. Mater Sci Eng, A 529:81–87

    Article  Google Scholar 

  49. Xiao L, Liu L, Zhou Y, Esmaeili S (2010) Resistance-spot-welded AZ31 magnesium alloys: part I. Dependence of fusion zone microstructures on second-phase particles. Metal Mater Trans A 41(6):1511–1522

    Article  Google Scholar 

  50. Yao Q, Luo Z, Li Y, Yan F, Duan R (2014) Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resistance spot weld. Mater Des 63:200–207

    Article  Google Scholar 

  51. Liu L, Xiao L, Feng JC, Tian YH, Zhou SQ, Zhou Y (2010) Resistance spot welded AZ31 magnesium alloys, part II: effects of welding current on microstructure and mechanical properties. Metall Mater Trans A 41a(10):2642–2650

    Article  Google Scholar 

  52. Radakovic D, Tumuluru M (2008) Predicting resistance spot weld failure modes in shear tension tests of advanced high-strength automotive steels. Weld J 87(4):96

    Google Scholar 

  53. Pereira A, Ferreira J, Antunes F, Bártolo P (2014) Assessment of the fatigue life of aluminium spot-welded and weld-bonded joints. J Adhes Sci Technol 28(14-15):1432–1450

    Article  Google Scholar 

  54. Patel VK, Bhole SD, Chen DL (2014) Fatigue life estimation of ultrasonic spot welded Mg alloy joints. Mater Des 62:124–132

    Article  Google Scholar 

  55. Behravesh SB, Jahed H, Lambert S (2014) Fatigue characterization and modeling of AZ31B magnesium alloy spot-welds. Int J Fatigue 64:1–13

    Article  Google Scholar 

  56. Shi HX, Qiu RF, Zhu JH, Zhang KK, Yu H, Ding GJ (2010) Effects of welding parameters on the characteristics of magnesium alloy joint welded by resistance spot welding with cover plates. Mater Des 31(10):4853–4857

    Article  Google Scholar 

  57. Liu L, Ren D, Liu F (2014) A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials 7(5):3735–3757

    Article  Google Scholar 

  58. Cao X, Jahazi M, Immarigeon J, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Technol 171(2):188–204

    Article  Google Scholar 

  59. Luo Y, Li JL (2014) Analysis of nugget formation during resistance spot welding on dissimilar metal sheets of aluminum and magnesium alloys. Metall Mater Trans A 45a(11):5107–5113

    Article  Google Scholar 

  60. Zhang Y, Luo Z, Li Y, Liu Z, Huang Z (2015) Microstructure characterization and tensile properties of Mg/Al dissimilar joints manufactured by thermo-compensated resistance spot welding with Zn interlayer. Mater Des 75:166–173

    Article  Google Scholar 

  61. Penner P, Liu L, Gerlich A, Zhou Y (2013) Feasibility study of resistance spot welding of dissimilar Al/Mg combinations with Ni based interlayers. Sci Technol Weld Joining 18(7):541–550

    Article  Google Scholar 

  62. Sun M, Niknejad S, Zhang G, Lee M, Wu L, Zhou Y (2015) Microstructure and mechanical properties of resistance spot welded AZ31/AA5754 using a nickel interlayer. Mater Des 87:905–913

    Article  Google Scholar 

  63. Penner P, Liu L, Gerlich A, Zhou Y, Penner P, Liu L, Gerlich A, Zhou Y (2014) Dissimilar resistance spot welding of aluminum to magnesium with Zn-coated steel interlayers. Weld J 93(6):225s–231s

    Google Scholar 

  64. Liu L, Xiao L, Chen D, Feng J, Kim S, Zhou Y (2013) Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds. Mater Des 45:336–342

    Article  Google Scholar 

  65. Ren DX, Liu LM (2014) Interface microstructure and mechanical properties of arc spot welding Mg-steel dissimilar joint with Cu interlayer. Mater Des 59:369–376

    Article  Google Scholar 

  66. Xu W, Chen D, Liu L, Mori H, Zhou Y (2012) Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints. Mater Sci Eng, A 537:11–24

    Article  Google Scholar 

  67. Liu L, Xiao L, Feng JC, Tian YH, Zhou SQ, Zhou Y (2010) The mechanisms of resistance spot welding of magnesium to steel. Metall Mater Trans A 41a(10):2651–2661

    Article  Google Scholar 

  68. Zhang G, Tian C, Liu L, Xu R (2014) Interfacial structure of the joints between magnesium alloy and mild steel with nickel as interlayer. Paper presented at the International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014)

  69. Jiang X, Yu H, Lin Q, Xu R (2015) Effects of Cu-Zn alloy additions on microstructure and strength of welded joints between magnesium alloy and mild steel. Paper presented at the International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015)

  70. Tao W, Ma Y, Chen Y, Li L, Wang M (2014) The influence of adhesive viscosity and elastic modulus on laser spot weld bonding process. Int J Adhes Adhes 51:111–116

    Article  Google Scholar 

  71. Liu L, Ren D, Li Y (2011) Static mechanics analyses of different laser weld bonding structures in joining AZ61 Mg alloy. Int J Adhes Adhes 31(7):660–665

    Article  Google Scholar 

  72. Shen J, Zhang Y, Lai X, Wang P (2012) Adhesive placement in weld-bonding multiple stacks of steel sheets. Weld J 91-2: 59–66

  73. Zhang Y, Sun H, Wang P-C, Chen G (2014) Improvement of process robustness in weld bonding of galvanized DP780 steel. Weld J 93(12):472S–481S

    Google Scholar 

  74. Sam S, Shome M (2010) Static and fatigue performance of weld bonded dual phase steel sheets. Sci Technol Weld Join 15(3):242–247

    Article  Google Scholar 

  75. Khan MF, Sharma G, Dwivedi D (2015) Weld-bonding of 6061 aluminium alloy. Int J Adv Manuf Technol 78(5-8):863–873

    Article  Google Scholar 

  76. Emre HE, Kaçar R (2015) Development of weld lobe for resistance spot-welded TRIP800 steel and evaluation of fracture mode of its weldment. The International Journal of Advanced Manufacturing Technology:1-11

  77. Jagadeesha T, Jothi TS (2015) Studies on the influence of process parameters on the AISI 316L resistance spot-welded specimens. The International Journal of Advanced Manufacturing Technology:1-16

  78. Ashtiani HRR, Zarandooz R (2015) Microstructural and mechanical properties of resistance spot weld of Inconel 625 supper alloy. The International Journal of Advanced Manufacturing Technology:1-13

  79. Lang B, Sun D, Li G, Qin X (2008) Effects of welding parameters on microstructure and mechanical properties of resistance spot welded magnesium alloy joints. Sci Technol Weld Join 13(8):698–704

    Article  Google Scholar 

  80. Ghazanfari H, Naderi M (2013) Influence of welding parameters on microstructure and mechanical performance of resistance spot welded high strength steels. Acta Metall Sin-Engl 26(5):635–640

    Article  Google Scholar 

  81. Uslu P, Demir B, Hayat F (2011) Effect of the weld current on tensile shear properties of the RSW junctions of the AZ31 Mg alloy sheet. Paper presented at the 6th International Advanced Technologies Symposium (IATS’11), Elazığ, Turkey

  82. Luo H, Hao C, Zhang J, Gan Z, Chen H, Zhang H (2011) Characteristics of resistance welding magnesium alloys AZ31 and AZ91. Weld J 90:249–257

    Google Scholar 

  83. Lang B, Sun DQ, Li GZ, Zhu BQ (2009) Electrode degradation in resistance spot welding of magnesium alloy. Isij Int 49(11):1744–1748

    Article  Google Scholar 

  84. Sun D, Lang B, Sun D, Li J (2007) Microstructures and mechanical properties of resistance spot welded magnesium alloy joints. Mater Sci Eng, A 460:494–498

    Article  Google Scholar 

  85. Aslanlar S, Ogur A, Ozsarac U, Ilhan E (2008) Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding. Mater Des 29(7):1427–1431

    Article  Google Scholar 

  86. Kaya Y, Kahraman N (2012) The effects of electrode force, welding current and welding time on the resistance spot weldability of pure titanium. Int J Adv Manuf Technol 60(1-4):127–134

    Article  Google Scholar 

  87. Ghazanfari H, Naderi M (2014) Expulsion characterization in resistance spot welding by means of a hardness mapping technique. Int J Miner Metall Mater 21(9):894–897

    Article  Google Scholar 

  88. Yi L, Rui W, Xiaojian X, Yang Z (2015) Expulsion analysis of resistance spot welding on zinc-coated steel by detection of structure-borne acoustic emission signals. The International Journal of Advanced Manufacturing Technology:1-8

  89. Tu YM, Qiu RF, Shi HX, Yu H, Zhang KK (2011) Analyses of influencing factors of pore formation during resistance spot welding of magnesium alloy. Mater Process Technol Pts 1-4:291–294

    Google Scholar 

  90. Harooni M, Ma J, Carlson B, Kovacevic R (2015) Two-pass laser welding of AZ31B magnesium alloy. J Mater Process Technol 216:114–122

    Article  Google Scholar 

  91. Harooni M, Carlson B, Strohmeier BR, Kovacevic R (2014) Pore formation mechanism and its mitigation in laser welding of AZ31B magnesium alloy in lap joint configuration. Mater Des 58:265–276

    Article  Google Scholar 

  92. Choi D-S, Kim D-C, Kang M-J (2013) Resistance spot welding characteristics of Mg alloy using process tape. J Weld Join 31(3):49–53

    Article  Google Scholar 

  93. Mathers G (2002) The welding of aluminium and its alloys. Woodhead Publishing, Cambridge

  94. Zou J, Zhao Q, Chen Z (2009) Surface modified long-life electrode for resistance spot welding of Zn-coated steel. J Mater Process Technol 209(8):4141–4146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yusof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manladan, S.M., Yusof, F., Ramesh, S. et al. A review on resistance spot welding of magnesium alloys. Int J Adv Manuf Technol 86, 1805–1825 (2016). https://doi.org/10.1007/s00170-015-8258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8258-9

Keywords

Navigation