Skip to main content
Log in

Resistance-Spot-Welded AZ31 Magnesium Alloys: Part I. Dependence of Fusion Zone Microstructures on Second-Phase Particles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A comparison of microstructural features in resistance spot welds of two AZ31 magnesium (Mg) alloys, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), with the same sheet thickness and welding conditions, was performed via optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). These alloys have similar chemical composition but different sizes of second-phase particles due to manufacturing process differences. Both columnar and equiaxed dendritic structures were observed in the weld fusion zones of these AZ31 SA and SB alloys. However, columnar dendritic grains were well developed and the width of the columnar dendritic zone (CDZ) was much larger in the SB alloy. In contrast, columnar grains were restricted within narrow strip regions, and equiaxed grains were promoted in the SA alloy. Microstructural examination showed that the as-received Mg alloys contained two sizes of Al8Mn5 second-phase particles. Submicron Al8Mn5 particles of 0.09 to 0.4 μm in length occured in both SA and SB alloys; however, larger Al8Mn5 particles of 4 to 10 μm in length were observed only in the SA alloy. The welding process did not have a great effect on the populations of Al8Mn5 particles in these AZ31 welds. The earlier columnar-equiaxed transition (CET) is believed to be related to the pre-existence of the coarse Al8Mn5 intermetallic phases in the SA alloy as an inoculant of α-Mg heterogeneous nucleation. This was revealed by the presence of Al8Mn5 particles at the origin of some equiaxed dendrites. Finally, the columnar grains of the SB alloy, which did not contain coarse second-phase particles, were efficiently restrained and equiaxed grains were found to be promoted by adding 10 μm-long Mn particles into the fusion zone during resistance spot welding (RSW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. JEOL is a Japan Electron Optics Ltd., Tokyo.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. S.H. Wu, J.C. Huang, and Y.N. Wang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2455–69.

    Article  CAS  ADS  Google Scholar 

  2. L.M. Liu, Z.D. Zhang, G. Song, and L. Wang: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 649–58.

    Article  CAS  ADS  Google Scholar 

  3. D.G. McCartney: Int. Mater. Rev., 1989, vol. 34, pp. 247–60.

    CAS  Google Scholar 

  4. S.A. David and J.M. Vitek: Int. Mater. Rev., 1989, vol. 34, pp. 213–45.

    CAS  Google Scholar 

  5. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech SA, Aedermannsdorf, Switzerland, 1989, pp. 51–92.

    Google Scholar 

  6. S. Kou: Welding Metallurgy, 2nd ed., Wiley Interscience, John Wiley & Sons, Inc., Hoboken, NJ, 2003, pp. 199–214.

  7. T. Ganaha, B.P. Pearce, and H.W. Kerr: Metall. Trans. A, 1980, vol. 11A, pp. 1351–59.

    CAS  ADS  Google Scholar 

  8. B.P. Pearce and H.W. Kerr: Metall. Trans. B, 1981, vol. 12B, pp. 479–86.

    Article  CAS  ADS  Google Scholar 

  9. J.C. Villafuerte, E. Pardo, and H.W. Kerr: Metall. Trans. A, 1990, vol. 21A, pp. 2009–19.

    CAS  ADS  Google Scholar 

  10. S. Kou and Y. Le: Weld J., 1986, vol. 65, pp. 305s–13s.

    Google Scholar 

  11. S. Kou and Y. Le: Metall. Trans. A, 1988, vol. 19A, pp. 1075–82.

    CAS  ADS  Google Scholar 

  12. F. Matsuda, H. Nakagawa, K. Nakata, and R. Ayani: Trans. JWRI, 1978, vol. 7, pp. 111–27.

    CAS  Google Scholar 

  13. G.D.J. Ram, T.K. Mitra, V. Shankar, and S. Sundaresan: J. Mater. Process. Technol., 2003, vol. 142, pp. 174–81.

    Article  Google Scholar 

  14. T. Koseki and G. Thewlis: Mater. Sci. Technol., 2005, vol. 21, pp. 867–79.

    Article  CAS  Google Scholar 

  15. P. Cao, M. Qian, and D.H. StJohn: Scripta Mater., 2006, vol. 54, pp. 1853–58.

    Article  CAS  Google Scholar 

  16. D. Qiu, M.X. Zhang, J.A. Taylor, H.M. Fu, and P.M. Kelly: Acta Mater., 2007, vol. 55, pp. 1863–71.

    Article  CAS  Google Scholar 

  17. T. Ganaha and H.W. Kerr: Met. Technol., 1978, vol. 5, pp. 62–69.

    CAS  Google Scholar 

  18. D.L. Hallum and W.A. Baeslack III: Welding J., 1990, vol. 69, pp. 326s–336s.

    Google Scholar 

  19. M. Kato, F. Matsuda, and T. Senda: Trans. Jpn. Welding Soc., 1972, vol. 3, pp. 69–76.

    Google Scholar 

  20. N. Tiner: AIME Tech. Pub., 1945, vol. 12, pp. 1–12.

    Google Scholar 

  21. J.Y. Byun, S. Kwon, H.P. Ha, and J.K. Yoon: in Magnesium Alloys and Their Applications, K.U. Kainer, ed., Wiley-VCH, Weinheim, 2003, p. 713.

    Google Scholar 

  22. T. Laser, M.R. Nurnberg, A. Janz, Ch. Hartig, D. Letzig, R. Schmid-Fetzer, and R. Bormann: Acta Mater., 2006, vol. 54, pp. 3033–41.

    Article  CAS  Google Scholar 

  23. Y. Tamura, J. Yagi, T. Haitani, N. Kono, and H. Tamehiro: Mater. Trans., 2003, vol. 44, pp. 552–57.

    Article  CAS  Google Scholar 

  24. D.Q. Sun, B. Lang, D.X. Sun, and J.B. Li: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 494–98.

    Google Scholar 

  25. L. Yu, K. Nakata, N. Yamamoto, and J. Liao: Mater. Lett., 2009, vol. 63, pp. 870–72.

    Article  CAS  Google Scholar 

  26. L. Liu, S. Zhou, Y. Tian, J. Feng, J. Jung, and Y. Zhou: Sci. Technol. Welding Joining, 2009, vol. 14, pp. 356–61.

    Article  CAS  Google Scholar 

  27. L. Liu, L. Xiao, J.C. Feng, Y.H. Tian, S.Q. Zhou, and Y. Zhou: unpublished research, 2010.

  28. M. Ohno and R. Schmid-Fetzer: Z Metallkd., 2005, vol. 96, pp. 857–69.

    CAS  Google Scholar 

  29. T. Laser, C. Hartig, M.R. Nurnberg, D. Letzig, and R. Bormann: Acta Mater., 2008, vol. 56, pp. 2791–98.

    Article  CAS  Google Scholar 

  30. C. Liu, F. Pan, and W. Wang: Mater. Sci. Forum, 2007, vols. 546–549, Part 1, pp. 395–98.

  31. J.C. Feng, Y.R. Wang, and Z.D. Zhang: Sci. Technol. Welding Joining, 2006, vol. 11, pp. 154–62.

    Article  CAS  Google Scholar 

  32. N.H. Fletcher: J. Chem. Phy., 1958, vol. 29, pp. 572–76.

    Article  CAS  ADS  Google Scholar 

  33. M. Qian and J. Ma: J. Chem. Phys. 2009, vol. 130, pp. 214709-1–214709-7.

    Article  ADS  Google Scholar 

  34. M. Qian and A. Das: Scripta Mater., 2006, vol. 54, pp. 881–86.

    Article  CAS  Google Scholar 

  35. J. Buha: Mater. Sci. Eng. A, 2008, vol. 492, pp. 11–19.

    Article  Google Scholar 

  36. S.S. Park, G.T. Bae, D.H. Kang, I.H. Jung, K.S. Shin, and N.J. Kim: Scripta Mater., 2007, vol. 57, pp. 793–96.

    Article  CAS  Google Scholar 

  37. S.S. Park, Y.S. Oh, D.H. Kang, and N.J. Kim: Mater. Sci. Eng. A, 2007, vols. 449–451, pp. 352–55.

    Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Natural Sciences and Engineering Research Council (NSERC), Canada Magnesium Strategic Network, and AUTO 21 Network of Centres of Excellence of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhou.

Additional information

Manuscript submitted April 14, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Liu, L., Zhou, Y. et al. Resistance-Spot-Welded AZ31 Magnesium Alloys: Part I. Dependence of Fusion Zone Microstructures on Second-Phase Particles. Metall Mater Trans A 41, 1511–1522 (2010). https://doi.org/10.1007/s11661-010-0197-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0197-3

Keywords

Navigation