Skip to main content
Log in

Resistance Spot Welded AZ31 Magnesium Alloys, Part II: Effects of Welding Current on Microstructure and Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Resistance spot welding of AZ31 magnesium alloys from different suppliers, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), was studied and compared in this article. The mechanical properties and microstructures have been studied of welds made with a range of welding currents. For both groups of welds, the tension-shear fracture load (F C) and fracture toughness (K C) increased with the increase in welding current. The F C and K C of AZ31-SA welds were larger than those of AZ31-SB welds. The fracture surfaces of AZ31-SB welds were relatively flatter than those of AZ31-SA. Microstructural examination via optical microscope demonstrated that almost all weld nuggets comprised two different zones, the columnar dendritic zone (CDZ), which grew epitaxially from the fusion boundary, and the equiaxed dendritic zone (EDZ), which formed in the center of the nugget. The nature and extent of the CDZ seemed to be critical to the strength and toughness of spot welds because of its position adjacent to the inherent external circular crack-like notch of spot welds and the stress concentration in this region. The width and microstructure of the CDZ were different between AZ31-SA and AZ31-SB. The AZ31-SA alloy produced finer and shorter columnar dendrites, whereas the AZ31-SB alloy produced coarser and wider columnar dendrites. The width of the CDZ close to the notch decreased with the increase of current. The CDZ disappeared when the current was higher than a critical value, which was about 24 kA for AZ31-SA and 28 kA for AZ31-SB. The microhardness of the two base materials was the same, but within the CDZ and EDZ, the hardness was greater in AZ31-SA than AZ31-SB welds. It is believed that the different microstructures of spot welds between AZ31-SA and AZ31-SB resulted in different mechanical properties; in particular, K C increased with the welding current because of the improved columnar-to-equiaxed transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L.M. Liu, G. Song, and M.L. Zhu: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1702–11.

    Article  CAS  ADS  Google Scholar 

  2. C.T. Chi and C.G. Chao: J. Mater. Process. Tech., 2007, vol. 182, pp. 369–73.

    Article  CAS  Google Scholar 

  3. L.M. Liu, H.Y. Wang, and Z.D. Zhang: Scripta Mater., 2007, vol. 56, pp. 473–76.

    Article  CAS  Google Scholar 

  4. M. Yamamoto, A. Gerlich, T.H. North, and K. Shinozaki: J. Mater. Sci., 2007, vol. 42, pp. 7657–66.

    Article  CAS  ADS  Google Scholar 

  5. Y.R. Wang, Z.H. Mo, J.C. Feng, and Z.D. Zhang: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 671–76.

    Article  CAS  Google Scholar 

  6. L. Liu, S.Q. Zhou, Y.H. Tian, J.C. Feng, J.P. Jung, and Y. Zhou: Sci. Technol. Weld. Join., 2009, vol. 14, pp. 356–61.

    Article  CAS  Google Scholar 

  7. D.Q. Sun, B. Lang, D.X. Sun, and J.B. Li: Mater. Sci. Eng. A, 2007, vols. 460–1, pp. 494–98.

    Google Scholar 

  8. S. Kou: Welding Metallurgy, Wiley, New York, NY, 2002, p. 188.

    Book  Google Scholar 

  9. A.F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley, and P.B. Prangnell: Mater. Sci. Eng. A, 2003, vol. 354, pp. 188–98.

    Article  Google Scholar 

  10. M.H. Burden and J.D. Hunt: Metall. Trans. A, 1975, vol. 6, pp. 240–41.

    Article  CAS  Google Scholar 

  11. V.B. Biscuola and M.A. Martorano: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2885–95.

    Article  CAS  ADS  Google Scholar 

  12. A.E. Ares and C.E. Schvezov: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1611–25.

    Article  CAS  Google Scholar 

  13. B.P. Pearce and H.W. Kerr: Metall. Trans. B, 1981, vol. 12B, pp. 479–86.

    Article  CAS  ADS  Google Scholar 

  14. W.L. Dai: Mater. Lett., 2003, vol. 57, pp. 2447–54.

    Article  CAS  Google Scholar 

  15. L. He, M. Wu, L. Li, and H. Hao: Appl. Phys. Lett., 2006, vol. 89, p. 131504.

    Article  ADS  Google Scholar 

  16. Y.M. Zhang, C. Pan, and A.T. Male: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2537–43.

    Article  CAS  Google Scholar 

  17. S. Kou and Y. Le: Metall. Trans. A, 1988, vol. 19A, pp. 1075–82.

    CAS  ADS  Google Scholar 

  18. L. Xiao, L. Liu, Y. Zhou, and S. Esmaieli: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1511–22.

    Article  CAS  Google Scholar 

  19. S. Zhang: Inter. J. Fracture, 1997, vol. 88, pp. 167–85.

    Article  Google Scholar 

  20. S. Zhang: Weld. J., 2001, vol. 80 (8), pp. 201s-3s.

    Google Scholar 

  21. S.I. Rokhlin and L. Adler: J. Appl. Phys., 1984, vol. 56 (3), pp. 726–31.

    Article  ADS  Google Scholar 

  22. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton, FL, 1995, pp. 87–89.

    MATH  Google Scholar 

  23. Y.J. Chao: Sci. Technol. Weld. Join., 2003, vol. 8 (2), pp. 133–37.

    Article  Google Scholar 

  24. M. Marya and X.Q. Gayden: Weld. J., 2005, vol. 84, pp.172s-82s.

    Google Scholar 

  25. D. Radaj and S. Zhang: Eng. Fract. Mech., 1991, vol. 39, pp. 391–13.

    Article  Google Scholar 

  26. Y.J. Chao: J. Eng. Mater. Technol., 2003, vol. 125 (2), pp. 125–32.

    Article  Google Scholar 

  27. J.C. Villafuerte, H.W. Kerr, and S.A. David: Mater. Sci. Eng. A, 1995, vol. 194, pp. 187–91.

    Article  Google Scholar 

  28. P. Yongyuth, P.K. Ghosh, P.C. Gupta, A.K. Patwardhan, and S. Prakash: ISIJ Int., 1992, vol. 32, pp. 771–78.

    Article  CAS  Google Scholar 

  29. Y. Qiu, G. Jia, X. Liu, and G. Wang: J. Iron Steel Res. Int., 2006, vol. 13, pp. 67–69.

    Article  CAS  Google Scholar 

  30. S. Kleiner, O. Beffort, A. Wahlen, and P.J. Uggowitzer: J. Light Metal., 2002, vol. 2, pp. 277–80.

    Article  Google Scholar 

  31. S. Kou: Welding Metallurgy, Wiley, New York, NY, 1987, p. 211.

    Google Scholar 

  32. J.D. Hunt: Mater. Sci. Eng. A, 1984, vol. 65, pp. 75–83.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported financially by the Natural Sciences and Engineering Research Council (NSERC) of Canada, AUTO21 Network Centres of Excellence of Canada, and NSERC Magnesium Network (MagNET). The authors want to thank Professors. S. Lawson, G.S. Zou and L.Q. Li for their suggestions in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhou.

Additional information

Manuscript submitted August 25, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Xiao, L., Feng, J.C. et al. Resistance Spot Welded AZ31 Magnesium Alloys, Part II: Effects of Welding Current on Microstructure and Mechanical Properties. Metall Mater Trans A 41, 2642–2650 (2010). https://doi.org/10.1007/s11661-010-0339-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0339-7

Keywords

Navigation