Skip to main content
Log in

A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Introgressing one-eighth of synthetic hexaploid wheat genome through a double top-cross plus a two-phase selection is an effective strategy to develop high-yielding wheat varieties.

Abstract

The continued expansion of the world population and the likely onset of climate change combine to form a major crop breeding challenge. Genetic advances in most crop species to date have largely relied on recombination and reassortment within a relatively narrow gene pool. Here, we demonstrate an efficient wheat breeding strategy for improving yield potentials by introgression of multiple genomic regions of de novo synthesized wheat. The method relies on an initial double top-cross (DTC), in which one parent is synthetic hexaploid wheat (SHW), followed by a two-phase selection procedure. A genotypic analysis of three varieties (Shumai 580, Shumai 969 and Shumai 830) released from this program showed that each harbors a unique set of genomic regions inherited from the SHW parent. The first two varieties were generated from very small populations, whereas the third used a more conventional scale of selection since one of bread wheat parents was a pre-breeding material. The three varieties had remarkably enhanced yield potential compared to those developed by conventional breeding. A widely accepted consensus among crop breeders holds that introducing unadapted germplasm, such as landraces, as parents into a breeding program is a risky proposition, since the size of the breeding population required to overcome linkage drag becomes too daunting. However, the success of the proposed DTC strategy has demonstrated that novel variation harbored by SHWs can be accessed in a straightforward, effective manner. The strategy is in principle generalizable to any allopolyploid crop species where the identity of the progenitor species is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Börner A, Worland AJ, Plaschke J, Schumann E, Law CN (1993) Pleiotropic effects of genes for reduced height (Rht) and day length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed 111:204–216

    Article  Google Scholar 

  • Börner A, Ogbonnaya FC, Röder MS, Rasheed A, Periyannan S, Lagudah ES (2015) Aegilops tauschii introgressions in wheat. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Springer, Cham, pp 245–271

    Google Scholar 

  • Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213

    Article  CAS  PubMed  Google Scholar 

  • Coghlan A (2006) Synthetic wheat offers hope to the world. New Scientist 2538

  • Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420

    Article  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao M, Li A, Shi T, Luo J, Zhang L, Zhang X, Ning S, Yuan Z, Zeng D, Kong X, Li X, Zheng H, Lan X, Zhang H, Zheng Y, Mao L, Liu D (2017) The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat. BMC Genom 18:149

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MAJ (2013) Prospects of doubling global wheat yields. Food Energy Secur 2:34–48

    Article  Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Roder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat 401 research and breeding using a fully annotated reference genome. Science 361:7191

    Article  CAS  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:889–890

    Google Scholar 

  • Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wan HS, Yang WY (2014) Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol 52:735–742

    Article  Google Scholar 

  • Li G, Boontung R, Powers C, Belamkar V, Huang T, Miao F, Baenziger PS, Yan L (2017) Genetic basis of the very short life cycle of ‘Apogee’ wheat. BMC Genom 18:838

    Article  CAS  Google Scholar 

  • Liu DC, Hao M, Li AL, Zhang LQ, Zheng YL, Mao L (2016) Allopolyploidy and interspecific hybridization for wheat improvement. In: Mason AS (ed) Polyploidy and hybridization for crop improvement. CRC Press, Cambridge, pp 27–52

    Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Rec Genet Soc Am 13:26–27

    Google Scholar 

  • Moore G (2015) Strategic pre-breeding for wheat improvement. Nat Plant 1:15018

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evolut 43:129–134

    Article  Google Scholar 

  • Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S (2017) Major genes determining yield-related traits in wheat and barley. Theor Appl Genet 130:1081–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogbonnaya FC, Abdalla OS, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME, Tsujimoto H (2013) Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. In: Janick J (ed) Plant breeding reviews. Wiley, New York, pp 35–122

    Chapter  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2006) Development and QTL assessment of Triticum aestivumAegilops tauschii introgression lines. Theor Appl Genet 112:634–647

    Article  PubMed  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D et al (2018) The transcriptional landscape of polyploid wheat. Science 361:662

    Article  CAS  Google Scholar 

  • Singh S, Vikram P, Sehgal D et al (2018) Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Sci Rep 8:12527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snape JW, Law CN, Parker BB, Worland AJ (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor Appl Genet 71:518–526

    Article  CAS  PubMed  Google Scholar 

  • Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190

    Article  CAS  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Book  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • The Wheat Pro-Breeding Project, Crop Wild Relatives (CWR) (2011) Global Crop Diversity Trust (GCDT). http://www.cwrdiversity.org/partnership/wheat-pre-breeding-project/

  • Trethowan RM, Mujeeb-Kazi A (2008) A novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Wan Y, Yan Z, Liu K, Zheng Y, D’Ovidio R, Shewry PR, Halford NG, Wang D (2005) Comparative analysis of the D genome-encoded high-molecular weight subunits of glutenin. Theor Appl Genet 111:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937

    Article  CAS  PubMed  Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, Van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Liu D, Li J, Zhang L, Wei H, Hu X, Zheng Y, He Z, Zou Y (2009) Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genom 36:539–546

    Article  CAS  Google Scholar 

  • Yu M, Chen GY, Zhang LQ, Liu YX, Liu DC, Wang JR, Pu ZE, Zhang L, Lan XJ, Wei YM, Liu CJ, Zheng YL (2014) QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. tauschii. J Inter Agric 13:1835–1844

    Article  Google Scholar 

  • Yu M, Chen GY, Pu ZE, Zhang LQ, Liu DC, Lan XJ, Wei YM, Zheng YL (2015) Quantitative trait locus mapping for growth duration and its timing components in wheat. Mol Breed 35:44

    Article  CAS  Google Scholar 

  • Zhang L, Liu D, Yan Z, Lan X, Zheng Y, Zhou Y (2004) Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci China C Life Sci 47:553–561

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, Van Wettstein D, Liu B (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci USA 110:3447–3452

    Article  PubMed  Google Scholar 

  • Zhao L, Ning S, Yi Y, Zhang L, Yuan Z, Wang J, Zheng Y, Hao M, Liu D (2018) Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genom 19:3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Chi Yen and Junliang Yang (Sichuan Agricultural University) for suggestions on the use of synthetic wheat; Robert McIntosh (University of Sydney) and Robert Koebner (smartenglish2008@gmail.com) for revising the article; the International Wheat Genome Sequencing Consortium for providing pre-publication access to the RefSeq v1.0 assembly and its annotation; Jizeng Jia (Chinese Academy of Agricultural Sciences) for providing SNP flanking sequences; Peng Qin (Yunnan Agricultural University) for running trials in Yunnan province; and Qiuzhen Jia (Gansu Academy of Agricultural Sciences) for providing Chinese Puccinia striiformis. f. sp. tritici races. This research was financially supported by the Chinese Government National Key Research and Development Program (2016YFD0102000), the National Natural Science Foundation of China (31071420, 30700495, 31671689, 31071418, 30270804, 31601300 and 31661143007), the Sichuan Provincial Agricultural Department Innovative Research Team (wheat-10) and the Sichuan Province Science and Technology Department Crops Breeding Project (2016NYZ0030). MJH and Rothamsted Research is supported via the Designing Future Wheat project (BB/P016855/1) by the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Contributions

D.L, L.Q.Z., M.H. and Y.Z. designed the project; D.L., L.Q.Z., M.H., Z.W.Y, S.N., S.D., Z.H.Y., B.W., Y.Z., X.L., H.Z. and L.H. produced the new elite lines; L.B.Z., D.X., Q.L., W.C. and K.Z. performed the FISH and SDS-PAGE analyses, gene isolation and plant-type comparison. M.H, M.Y., Y.W., L.B.Z., A.L. and W.Y. performed the phenotypic and QTL analyses. M.H., D.L., J.W., M.C. and X.C. performed the SNP genotyping and statistical analyses. D.L., M.H., M.K., M.J.H. and L.M wrote the manuscript.

Corresponding authors

Correspondence to Ming Hao, Lianquan Zhang or Dengcai Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author declares no competing financial interests.

Additional information

Communicated by Ian Mackay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Zhang, L., Zhao, L. et al. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet 132, 2285–2294 (2019). https://doi.org/10.1007/s00122-019-03354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03354-9

Navigation