Skip to main content
Log in

Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The wheat spindle streak mosaic virus (WSSMV) or wheat yellow mosaic virus (WYMV) resistance gene, Wss1, from Haynaldia villosa, was previously mapped to the chromosome arm 4VS by the development of 4V (4D) substitution and T4DL·4VS translocation lines. For better utilization and more accurate mapping of the Wss1, in this research, the CS ph1b mutant was used to induce new translocations with shortened 4VS chromosome fragments. Thirty-five homozygous translocations with different alien fragment sizes and breakpoints of 4VS were identified by GISH and molecular marker analysis. By field test, it was found that all the identified terminal translocations characterized as having smaller 4VS chromosome segments in the chromosome 4DS were highly resistant to WYMV, while all the interstitial translocations with 4VS inserted into the 4DS were WYMV susceptible. Marker analysis using 32 4VS-specific markers showed that both the terminal and interstitial translocations had different alien fragment sizes. Five specific markers could be detected in the WYMV-resistant terminal translocation line NAU421 with the shortest introduced 4VS fragment, indicating they can be used for marker-assisted selection in wheat breeding. Based on the resistance evaluation, GISH and molecular marker analysis of the available translocations, the gene(s) conferring the WYMV resistance on 4VS could be further cytologically mapped to the distal region of 4VS, immersed in the bin of FL 0.78–1.00. The newly developed small fragment translocations with WYMV resistance and 4VS specific markers have laid solid groundwork for the utilization in wheat breeding for WYMV resistance as well as further cloning of Wss1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nat Protoc 2:2649–2654

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Simeone R, Resta P (1987) The addition of Dasypyrum villosum (L.) Candargy chromosomes to durum wheat (Triticum durum Desf.). Theor Appl Genet 74:328–333

    Article  PubMed  CAS  Google Scholar 

  • Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL et al (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  PubMed  CAS  Google Scholar 

  • Chen JP (2005) Research status and prospect of cereal viruses transmitted by Polymyxa graminis in China. Proc Nat Sci 15:524–533

    Google Scholar 

  • Chen PD, Liu DJ (1982) Cytogenetic studies of hybrid progenies between Triticum aestivum and Haynaldia villosa. J Nanjing Agric Univ 4:1–15

    CAS  Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101

    PubMed  CAS  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu CJ, Gale D (1992) RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Article  PubMed  CAS  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Grądzielewska A (2006) The genus Dasypyrum—part 2. Dasypyrum villosum—a wild species used in wheat improvement. Euphytica 152:441–454

    Article  Google Scholar 

  • Hyde BB (1953) Addition of individual Haynaldia villosa chromosomes to hexaploid wheat. Am J Botany 40:174–182

    Article  Google Scholar 

  • Jiang JM, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Li HJ, Conner RL, Liu ZY, Li YW, Chen Y, Zhou YL et al (2007) Characterization of wheat-triticale lines resistant to powdery mildew, stem rust, stripe rust, wheat curl mite, and limitation on spread of WSMV. Plant Dis 91:368–374

    Article  Google Scholar 

  • Li HF, Gill BS, Wang XE, Chen PD (2011) A Tal-PhI wheat genetic stock facilitates efficient alien introgression. Genet Resour Crop Evol 58:667–678

    Article  Google Scholar 

  • Liu WH, He ZT, Geng B, Hou MS, Zhang M, Nie H et al (2004) Identification of resistance to yellow mosaic disease of wheat and analysis for its inheritance of some varieties. Acta Phytopathol Sin 34:542–547

    Google Scholar 

  • Liu WH, Nie H, Wang SB, Li X, He ZT, Han CG et al (2005a) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111:651–657

    Article  PubMed  CAS  Google Scholar 

  • Liu WH, Nie H, He ZT, Chen XL, Han YP, Wang JR et al (2005b) Mapping of a wheat resistance gene to yellow mosaic disease by amplified fragment length polymorphism and simple sequence repeat markers. J Integr Plant Biol 47:1133–1139

    Article  CAS  Google Scholar 

  • Liu WX, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO (2011) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski AJ (1995) Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theor Appl Genet 90:714–719

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS·1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    Article  CAS  Google Scholar 

  • Lukaszewski AJ, Curtis CA (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet 86:121–127

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  PubMed  CAS  Google Scholar 

  • Mullan DJ, Mirzaghaderi G, Walker E, Colmer TD, Francki MG (2009) Development of wheat–Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion’during salinity stress. Theor Appl Genet 119:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Murray TD, Pena RC, Yildirim A, Jones SS (1994) A new source of resistance to Pseudocercosporella herpotrichoides, cause of eyespot disease of wheat, located on chromosome 4 V of Dasypyrum villosum. Plant Breed 113:281–286

    Article  Google Scholar 

  • Nishio Z, Kojima H, Hayata A, Iriki N, Tabiki T, Ito M et al (2010) Mapping a gene conferring resistance to Wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’(Triticum aestivum L.). Euphytica 176:223–229

    Article  CAS  Google Scholar 

  • Niu ZX, Klindworth DL, Friesen TL, Chao SM, Jin Y, Cai XW et al (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  • Sharp PJ, Chao S, Desai S, Gale MD (1989) The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet 78:342–348

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Shepherd KW, McIntosh RA (1990) Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor Appl Genet 80:609–616

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Taketa S, Awayama T, Ichii M, Sunakawa M, Kawahara T, Murai K (2005) Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome 48:115–124

    Article  PubMed  CAS  Google Scholar 

  • Uslu E, Miller TE, Rezanoor NH, Nicholson P (1998) Resistance of Dasypyrum villosum to the cereal eyespot pathogens, Tapesia yallundae and Tapesia acuformis[J]. Euphytica 103:203–209

    Article  Google Scholar 

  • Wang XW, Lai JR, Chen LH, Liu GT (1998) Molecular identification for Chinese Spring ph1b mutant. Scientia Agric Sincia 31:31–34

    CAS  Google Scholar 

  • Wang RRC, Li XM, Hu ZM, Zhang JY, Larson SR, Zhang XY et al (2003) Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Int J Plant Sci 164:25–33

    Article  Google Scholar 

  • Xin ZY, Zhang ZY, Chen X, Lin ZS, Ma YZ, Xu HJ et al (2001) Development and characterization of common wheat-Thinopyrum intermedium translocation lines with resistance to barley yellow dwarf virus. Euphytica 119:161–165

    Article  CAS  Google Scholar 

  • Zhang P, Li WL, Friebe B, Gill BS (2004) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987

    Article  PubMed  CAS  Google Scholar 

  • Zhang QP, Li Q, Wang XE, Wang HY, Lang SP, Wang YN et al (2005) Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145:317–320

    Article  CAS  Google Scholar 

  • Zhang W, Zhang RQ, Feng YG, Bie TD, Chen PD (2013) Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chinese Sci Bull 58:890–897

    Article  CAS  Google Scholar 

  • Zhu XB, Wang HY, Guo J, Wu ZZ, Cao AZ, Bie TD et al (2012) Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theor Appl Genet 124:177–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National High Technology Research Program (‘863’ Program) of China (grant no. 2011AA100101, 2011AA10010201), the National Natural Science Foundation of China (grant no. 31201204), Natural Science Foundation of Jiangsu Province (grant no. BK2010448), Technology Support Program of Jiangsu Province (grant no. BE2012306), the Program of Introducing Talents of Discipline to Universities (No. B08025) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiue Wang.

Additional information

Communicated by I. D. Godwin.

R. Zhao and H. Wang contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2013_2181_MOESM1_ESM.tif

Fig. S1 GISH and FISH patterns of chromosomes on RTC at mitotic metaphase of wheat–H. villosa terminal translocation lines. The probes were described in Fig. 5. (a-b) NAU422; (c-d) NAU 423; (e–f) NAU424; (g-h) NAU425; (i-j) NAU426; (k-l) NAU427; (m–n) NAU428; (o-p) NAU429; (q-r) NAU430; (s-r) NAU431. Scale bar = 10 μm (TIFF 3368 kb)

122_2013_2181_MOESM2_ESM.tif

Fig. S2 GISH and FISH patterns of chromosomes on RTC at mitotic metaphase of wheat–H. villosa interstitial translocation lines. The probes were described in Fig. 5. (a-b) NAU432; (c-d) NAU 433; (e–f) NAU434; (g-h) NAU435; (i-j) NAU436; (k-l) NAU437; (m–n) NAU438. Scale bar = 10 μm.(TIFF 2476 kb)

Table S1 Specific markers for chromosome 4V of H. villosa (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, R., Wang, H., Xiao, J. et al. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa . Theor Appl Genet 126, 2921–2930 (2013). https://doi.org/10.1007/s00122-013-2181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2181-y

Keywords

Navigation