Skip to main content
Log in

Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Using a GBS-SNP map, a QTL for pre-harvest sprouting resistance on 4AL of Totoumai A was delimited to 2.9-cM interval, and SNP closely linked to several other QTL were identified.

Abstract

Pre-harvest sprouting (PHS) of wheat is a major constraint to wheat production in many wheat-growing areas worldwide, because it reduces both wheat grain yield and the end-use quality. To identify markers tightly linked to the quantitative trait loci (QTL) for PHS resistance and seed dormancy (SD), we evaluated 155 recombinant inbred lines (RIL) derived from a cross between a PHS-resistant parent ‘Tutoumai A’ and a PHS-susceptible parent ‘Siyang 936’ for single-nucleotide polymorphisms (SNP) using genotyping-by-sequencing (GBS), and for PHS resistance and SD using both field and greenhouse grown plants. Two SNP, GBS109947 and GBS212432, were mapped to a major QTL region for PHS resistance and SD on chromosome 4AL, and delimited the QTL to a 2.9-cM interval. Two and nine additional SNP were mapped to minor QTL regions for SD on chromosome 5B and 5A, respectively. Critical SNP in these QTL regions were converted into KBioscience Competitive Allele-Specific PCR (KASP) assays that can be easily used for marker-assisted selection to improve PHS resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson JA, Sorrells ME, Tanksley SD (1993) RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453–459

    Article  CAS  Google Scholar 

  • Argel PJ, Humphreys LR (1983) Environmental effects on seed development and hardseededness in Stylosanthes hamata cv. Verano. I. Temperature. Crop Pasture Sci 34:261–270

    Article  Google Scholar 

  • Bewley JD, Black M (1982) Physiological and biochemistry of seeds in relation to germination, vol 2. Springer, Heidelberg, pp 61–81

    Book  Google Scholar 

  • Ceccato DV, Daniel Bertero H, Batlla D (2011) Environmental control of dormancy in quinoa (Chenopodium quinoa) seeds: two potential genetic resources for preharvest sprouting tolerance. Seed Sci Res 21:133–141

    Article  Google Scholar 

  • Chen CX, Cai SB, Bai GH (2008) A major QTL controlling seed dormancy and preharvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed 21:351–358

    Article  CAS  Google Scholar 

  • Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F-2 maize population. BMC Genomics 15(1):433

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gale MD (1989) The genetics of preharvest sprouting in cereals, particularly in wheat. In: Derera NF (ed) Preharvest field sprouting in cereals. CRC Press, Boca Raton, pp 85–110

    Google Scholar 

  • Gfeller F, Svejda F (1960) Inheritance of post-harvest seed dormancy and kernel color in spring wheat lines. Can J Plant Sci 40:1–6

    Article  Google Scholar 

  • Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross. Theor Appl Genet 104:39–47

    Article  CAS  PubMed  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, Ginkel MV (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcrossderived wheat lines. Genetics 178:1725–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kato K, Nakamura W, Tabiki T, Miura H, Sawada S (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985

    Article  CAS  Google Scholar 

  • King RW, Richards RA (1984) Water-uptake in relation to preharvest sprouting damage in wheat—ear characteristics. Aust J Agric Res 35:327–336

    Article  Google Scholar 

  • Kobayashi T, Yamamoto K, Suetsugu Y, Kuwazaki S, Hattori M, Jairin J, Matsumura M (2014) Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens. Proc R Soc B Biol Sci 281(1787):20140726

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genomics 4:94–101

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu S, Cai S, Graybosch R, Chen C, Bai G (2008) Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theor Appl Genet 117:691–699

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Bai G, Cai S, Chen C (2011) Dissection of genetic components of preharvest sprouting resistance in white wheat. Mol Breed 27:511–523

    Article  Google Scholar 

  • Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G (2013) Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 195:263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley P, Waugh R (2014) An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104–114

    Article  PubMed Central  PubMed  Google Scholar 

  • Mares DJ, Mrva K (2001) Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Crop Pasture Sci 52:1257–1265

    Article  CAS  Google Scholar 

  • Mares DJ, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Mascher M, Wu S, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS One 8:e76925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohan A, Kulwal P, Singh R, Kumar V, Mir RR, Kumar J, Prasad M, Balyan HS, Gupta PK (2009) Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168:319–329

    Article  CAS  Google Scholar 

  • Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and group 4 chromosomes, and their combined eVect. Theor Appl Genet 110:1315–1323

    Article  CAS  PubMed  Google Scholar 

  • Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2009) Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet 119:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Komatsuda T, Miura H (2007) Mapping diploid wheat homologues of Arabidopsis seed ABA signaling genes and QTLs for seed dormancy. Theor Appl Genet 114:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. The Plant Cell Online 23:3215–3229

    Article  CAS  Google Scholar 

  • Noda K, Matsuura T, Maekawa M, Taketa S (2002) Chromosomes responsible for sensitivity of embryo to abscisic acid and dormancy in wheat. Euphytica 123:203–209

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Ye G, Hearnden PR, Hernandez E, Eastwood RF, Ginkel MV, Shorter SC, Winchester JM (2008) Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Theor Appl Genet 116:891–902

    Article  CAS  PubMed  Google Scholar 

  • Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106:1491–1496

    CAS  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasul G, Humphreys DG, Brule-Babel A, McCartney CA, Knox RE, DePauw RM, Somers DJ (2009) Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica 168:363–378

    Article  CAS  Google Scholar 

  • Roy JK, Prasad M, Varshney RK, Balyan HS, Blake TK (1999) Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet 99:336–340

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saintenac C, Jiang D, Wang S, Akhunov E (2013) Sequence-based mapping of the polyploid wheat genome. G3 Genes Genomes Genet 3:1105–1114

    Google Scholar 

  • Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One 8:e54603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, Couch SM (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716

    Article  CAS  PubMed  Google Scholar 

  • Tan MK, Sharp PJ, Lu MQ, Howes N (2006) Genetics of grain dormancy in a white wheat. Aust J Agric Res 57:1157–1165

    Article  CAS  Google Scholar 

  • Torada A, Ikegnchi S, Koike M (2005) Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica 143:251–255

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raliegh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wicker T, Narechania A, Sabot F, Stein J, Vu GT, Graner A, Stein N (2008) Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats. BMC Genomics 9(1):518

    Article  PubMed Central  PubMed  Google Scholar 

  • Zanetti S, Winzeler M, Keller M, Keller B, Messmer M (2000) Genetic analysis of pre-harvest sprouting resistance in a wheat × spelt cross. Crop Sci 40:1406–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This is contribution number 15-199-J from the Kansas Agricultural Experiment Station. This project is partly funded by the National Research Initiative Competitive Grants CAP project 2011-68002-30029 from the USDA National Institute of Food and Agriculture. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Bai.

Additional information

Communicated by A. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Cai, S., Wang, S. et al. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128, 1385–1395 (2015). https://doi.org/10.1007/s00122-015-2513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2513-1

Keywords

Navigation