Skip to main content

Advertisement

Log in

Agro is not cool: DNA damage and oxidative stress in anurans evidencing the devastation of subtropical grasslands

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

A Correction to this article was published on 17 November 2023

This article has been updated

Abstract

Changes in land use are considered the main factor in the degradation of ecosystems, especially in continental aquatic environments. In this study, we evaluated the genotoxicity potential of the environmental matrix using tadpoles from three anuran species as a model, to test whether more genetic damage and changes in oxidative stress biomarkers occur in ponds on farms than in native grasslands. Tadpoles were sampled from ponds in the subtropical highland grassland region of southern Brazil. We quantified DNA damage in tadpoles of Scinax squalirostris, Ololygon aromothyella and Odontophrynus asper using the comet assay and oxidative stress changes using glutathione as a biomarker. Our results demonstrated that the tadpoles of the three anuran species collected in agricultural ponds accumulated greater DNA damage and alterations in biomarkers of oxidative stress when compared with those collected in ponds in the native grassland, corroborating our initial hypothesis. The DNA damage detected in tadpoles from farm ponds suggests that these populations are suffering impacts from environmental contamination, mainly from heavy metals and fertilizers, as indicated by our complementary data. Our results highlight the importance of grassland remnants for the conservation of amphibians in the subtropical region, which are under severe threat due to the replacement of natural areas by agriculture. Moreover, we emphasize the importance of monitoring and quantifying agrochemicals in habitats and organisms to ensure the viability of populations and support adequate management and conservation strategies for the species of pond-breeding anurans in the region of subtropical grasslands in southern Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Change history

References

  • Akerboon TPM, Sies H (1981) Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Meth Enzymol 77:373–382. https://doi.org/10.1016/S0076-6879(81)77050-2

    Article  Google Scholar 

  • Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T, Reis RE, Winemiller KO, Ripple WJ (2021) Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50:85–94. https://doi.org/10.1007/s13280-020-01318-8

    Article  PubMed  Google Scholar 

  • Alho CJR (2012) Importância da biodiversidade para a saúde humana: uma perspectiva ecológica. Estud Av 26:151–166. https://doi.org/10.1590/S0103-40142012000100011

    Article  Google Scholar 

  • Alves GHZ, Tófoli RM, Rodrigues-Filho JL, Sacramento PA, Cionek VM, Figueiredo BRS, Couto EV (2020) Brazil’s vegetation ravage may be encouraged by law. Biodivers Conserv 29:1105–1107. https://doi.org/10.1007/s10531-020-01933-7

    Article  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVAþ for PRIMER: Guide to software and statistical methods. PRIMER-E, Plymouth, UK

  • Andrade BO, Koch C, Boldrini II, Vélez-Martin E, Hasenack H, Hermann J, Kollmann J, Pillar VP, Overbeck GE (2015) Grassland degradation and restoration: a conceptual framework of stage and thresholds illustrated by southern Brazilian grasslands. Nat Conserv 13:95–104. https://doi.org/10.1016/j.ncon.2015.08.002

    Article  Google Scholar 

  • Andrade BO, Bonilha CL, Overbeck GE, Vélez-Martin E, Rolim RG, Bordignon SAL, Schneider AA, Ely CV, Lucas DB, Garcia EN, Santos ED, Torchelsen FP, Vieira MS, Silva Filho PJS, Ferreira PMA, Trevisan R, Hollas R, Campestrini S, Pillar VP, Boldrini II (2019) Classification of South Brazilian grasslands: Implications for conservation. Appl Veg Sci 22:168–184. https://doi.org/10.1111/avsc.12413

    Article  Google Scholar 

  • Andrade BO, Dröse W, Aguiar CAA et al (2023) 12,500+ and counting: biodiversity of the Brazilian Pampa. Front Biogeog 15:1. https://doi.org/10.21425/F5FBG59288

    Article  Google Scholar 

  • Arcaute CR, Pérez-Inglesis JM, Nikoloff N, Natale GS, Soloneski S, Larramendy ML (2014) Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol Indic 45:632–639. https://doi.org/10.1016/j.ecolind.2014.05.034

    Article  CAS  Google Scholar 

  • American Public Health Association – APHA (1998) Standard Methods for the Examination of Water and Wastewater. 20º ed. Washington

  • Azambuja G, Martins IK, Franco JL, Santos TG (2021) Effects of mancozeb on heat Shock protein 70 (HSP70) and its relationship with the thermal physiology of Physalaemus henselii (Peters, 1872) tadpoles (Anura: Leptodactylidae). J Therm Biol. https://doi.org/10.1016/j.jtherbio.2021.102911

    Article  PubMed  Google Scholar 

  • Baeza S, Pareulo JM (2020) Land use/land Cover Change (2000–2014) in the Rio de la Plata Grasslands: An Analysis Based on MODIS NDVI Time Series. Remote Sen 12:381. https://doi.org/10.3390/rs12030381

    Article  Google Scholar 

  • Barth BJ, Wilson RS (2010) Life in acid: interactive effects of pH and natural organic acids on growth, development and locomotor per-formance of larval striped marsh frogs (Limnodynastes peronii). J Exp Biol 213:1293–1300. https://doi.org/10.1242/jeb.028472

    Article  CAS  PubMed  Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB, Batista RF, Prado PI (2007) Habitat split and the global decline of amphibians. Science 318:1775–1777. https://doi.org/10.1126/science.1149374

    Article  CAS  PubMed  Google Scholar 

  • Becker CG, Fonseca CR, Haddad CFB, Prado PI (2010) Habitat split as a cause of local population declines of amphibians with aquatic larvae. Conserv Biol 24:287–294. https://doi.org/10.1111/j.1523-1739.2009.01324.x

    Article  PubMed  Google Scholar 

  • Behling H, Pillar VP, Bauermann SG (2005) Late Quaternary grassland (campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev Palaeobot Palynol 133:235–248. https://doi.org/10.1016/j.revpalbo.2004.10.004

    Article  Google Scholar 

  • Bencke GA, Mauricio GN, Develey PF, Goerck JM (2006) Áreas Importantes Para a Conservação das Aves no Brasil: Parte 1–Estados do Domínio da Mata Atlântica. São Paulo: SAVE Brasil

  • Bennett JM, Steets JA, Burns JH, Burkle LA, Vamosi JC, Wolowski M, Arceo-Gómez G, Burd M, Durka W, Ellis AG, Freitas L, Li J, Rodger JG, Ştefan V, Xia J, Knight TM, Ashman TL (2020) Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat Commun 11:3999. https://doi.org/10.1038/s41467-020-17751-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop P, Ângulo A, Lewis J, Moore R, Rabb G, Garcia Moreno J (2012) The Amphibian Extinction Crisis - what will it take to put the action into the Amphibian Conservation Action Plan? Sapiens 5:97–111

    Google Scholar 

  • Bolognesi C, Cirillo S (2014) Genotoxicity biomarkers in aquatic bioindicators. Curr Zool 60:273–284. https://doi.org/10.1093/czoolo/60.2.273

    Article  CAS  Google Scholar 

  • Burlibasa L, Gavrila L (2011) Amphibians as model organisms for study environmental genotoxicity. Appl Ecol Environ Res 9:1–15. https://doi.org/10.15666/aeer/0901_001015

    Article  Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Internat 32:831–849. https://doi.org/10.1016/j.envint.2006.05.002

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58:1255–1267. https://doi.org/10.1016/j.chemosphere.2004.10.044

    Article  CAS  PubMed  Google Scholar 

  • Cardinale B, Duffy J, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER V6 User Manual/Tutorial. PRIMER-E, Plymouth, 192 p.

  • Clarke KR, Gorley RN (2015) PRIMER v7 User Manual/Tutorial. PRIMER-EPlymouth.

  • Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261. https://doi.org/10.1385/MB:26:3:249

    Article  CAS  PubMed  Google Scholar 

  • Crivellari LB, Leivas PT, Leite JCM, Gonçalves DS, Mello CM, Rossa-Feres DC, Conte CE (2014) Amphibians of grasslands in the state of Paraná, southern Brazil (Campos Sulinos). Herpetol Notes 7:639–654

    Google Scholar 

  • Cruz-Esquivel A, Viloria-Rivas J, Marrugo-Negrete J (2017) Genetic damage in Rhinella marina populations in habitats affected by agriculture in the middle region of the Sinú River, Colombia. Environ Sci Pollut Res 24:27392–27401. https://doi.org/10.1007/s11356-017-0134-8

    Article  CAS  Google Scholar 

  • Da Rocha CAM (2011) The micronucleus test in erythrocytes of amphibian larvae as tool for xenobiotic exposure risk assessment: a brief review and an example using lithobates catesbeianus exposed to copper sulphate. Middle-East J Sci Res 8:23–29

    Google Scholar 

  • Daam MA, Ilha P, Schiesari L (2020) Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species. Ecotoxicology 29:1516–1521. https://doi.org/10.1007/s10646-020-02247-8

    Article  CAS  PubMed  Google Scholar 

  • Dafre AL, Medeiros ID, Muller IC, Ventura EC, Bainy AC (2004) Antioxidant enzymes and thiol/disulfide status in the digestive gland of the brown mussel Perna perna exposed to lead and paraquat. Chem Biol Interact 149:97–105. https://doi.org/10.1016/j.cbi.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  • de Campos PS, Furtado F, D’Incao LH, Poersch W (2014) The effect of ammonia, nitrite, and nitrate on the oxygen consumption of juvenile pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817) (Crustacea: Decapoda). J Appl Aquac 26:94–101. https://doi.org/10.1080/10454438.2014.882216

    Article  Google Scholar 

  • Dhawan A, Bajpayee M, Parmar D (2009) Comet assay: a reli able tool for the assessment of DNA damage in different models. Cell Biol Toxicol 25:5–32. https://doi.org/10.1007/s10565-008-9072-z

    Article  CAS  PubMed  Google Scholar 

  • Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI, Lovelace JK, Barber NL, Linsey KS (2018) Estimated use of water in the United States in 2015: U.S. Geol Surv Circ 1441:65

    Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the anthropocene. Science 345:401–406. https://doi.org/10.1126/science.1251817

    Article  CAS  PubMed  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of Amphibians. McGraw-Hill, New York, p 670p

    Book  Google Scholar 

  • Epa US (2009) National recommended water quality criteria. Office of Water, Office of Science and Technology, Washington DC

    Google Scholar 

  • Fernandes D, Potrykus J, Morsiani C, Raldua D, Lavado R, Porte C (2002) The combined use of chemical and biochemical markers to assess water quality in two low-stream rivers (NE Spain). Environ Res 90:169–178. https://doi.org/10.1006/enrs.2002.4390

    Article  CAS  PubMed  Google Scholar 

  • Fernandes GW, Vale MM, Overbeck GE et al (2017) Dismantling Brazil’s science threatens global biodiversity heritage. Perspect Ecol Conserv 15:239–243. https://doi.org/10.1016/j.pecon.2017.07.004

    Article  Google Scholar 

  • Ferracini VL, Queiros SCN, Gomes MAF (2006) Amostragem de sedimento para análise de agrotóxicos. In: Filizola HF, Gomes MAF, Souza MD (eds) Manual de procedimentos de coleta de amostras em áreas agrícolas para análise da qualidade ambiental: solo, água e sedimentos. Jaguariúna: Embrapa Meio Ambiente, 169p.

  • Filho DW, Torres MA, Tribess TB, Pedrosa RC, Soares CHL (2001) Influence of season and pollution on the antioxidant defenses of the cichlid fish acará (Geophagus brasiliensis). Braz J Med Biol Res 34:719–726. https://doi.org/10.1590/S0100-879X2001000600004

    Article  Google Scholar 

  • Filizola HF, Pessoa MCPY, Gomes MAF, Souza MD (2002) Contaminação dos solos em áreas agrícolas. In: Manzatto CV, Freitas Junior E, Peres JRR (eds) Uso agrícola dos solos brasileiros. Embrapa Solos, Rio de Janeiro, pp 79–86

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772

    Article  CAS  PubMed  Google Scholar 

  • Fontana CS, Bencke GA (2015) Biodiversidade de Aves. In: Pillar VP, Lange O. (eds) Campos do Sul. Rede Campos Sulinos – UFRGS, Porto Alegre, pp 91–101.

  • Freitas JS, Felício AA, Teresa FB, Almeida EA (2017) Combined effects of temperature and clomazone (Gamit®) on oxidative stress responses and B-esterase activity of Physalaemus nattereri (Leiuperidae) and Rhinella schneideri (Bufonidae) tadpoles. Chemosphere 185:548–562. https://doi.org/10.1016/j.chemosphere.2017.07.061

    Article  CAS  PubMed  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res/rev Mutat Res 681:80–92. https://doi.org/10.1016/j.mrrev.2008.03.001

    Article  CAS  Google Scholar 

  • Frost DR (2023) Amphibian Species of the World: an Online Reference. Version 6.1. Electronic Database accessible at https://amphibiansoftheworld.amnh.org/index.php American Museum of Natural History, New York, USA. (Date of access: 30th, Mar, 2023). https://doi.org/10.5531/db.vz.0001

  • Gavric J, Prokic M, Despotovic S, Gavrilovic B, Radovanovic T, Borkovic-Mitic S, Pavlovic S, Saičic Z (2015) Biomarkers of oxidative stress and acetylcholinesterase activity in the blood of grass snake (Natrix natrix L.) during prehibernation and posthibernation periods. Braz Archiv Biol Technol 58:443–453. https://doi.org/10.1590/S1516-8913201500308

    Article  CAS  Google Scholar 

  • Genova G, Della Chiesa S, Mimmo T, Borruso L, Cesco S, Tasser E, Matteazzi A, Niedrist G (2022) Copper and zinc as a window to past agricultural land-use. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.126631

    Article  PubMed  Google Scholar 

  • Gonçalves MW, Carvalho WF, da Cruz AD, Vieira RRS, de Morais AR, Gambale PG, Batista VG, Bastos RP, Silva DM (2013) Contrasting patterns of DNA damage by the comet assay in four species of the Hylidae family (Amphibia-Anura). Res J Biol 3:1–7

    Google Scholar 

  • Gonçalves MW, Vieira TB, Maciel NM, Carvalho WS, Lima LSF, Gambale PG, da Cruz AD, Nomura F, Bastos RP, Silva DM (2014) Detecting genomic damages in the frog Dendropsophus minutus: preserved versus perturbed areas. Environ Sci Pollut Res 22:3947–3954. https://doi.org/10.1007/s11356-014-3682-1

    Article  CAS  Google Scholar 

  • Gonçalves DS, Crivellari LB, Conte CE (2015) Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands. Ana Acad Bras Ciênc 87:1751–1762. https://doi.org/10.1590/0001-3765201520140471

    Article  Google Scholar 

  • Gonçalves MW, Gambale PG, Godoy FR, Alves AA, Rezende PHA, da Cruz AD, Maciel NM, Nomura F, Bastos RP, Marco-Jr P, Silva DM (2017) The agricultural impact of pesticides on Physalaemus cuvieri tadpoles (Amphibia: Anura) ascertained by comet assay. Zoologia. https://doi.org/10.3897/zoologia.34.e19865

    Article  Google Scholar 

  • Gonçalves MW, de Campos CBM, Godoy FR, Gambale PG, Nunes HF, Nomura F, Bastos RP, da Cruz AD, Silva DM (2019) Assessing genotoxicity and mutagenicity of three common Amphibian species inhabiting agroecosystem environment. Arc Environ Contam Toxicol 77:409–420. https://doi.org/10.1007/s00244-019-00647-4

    Article  CAS  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Greulich K, Pflugmacher S (2003) Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat Toxicol 65:329–336. https://doi.org/10.1016/S0166-445X(03)00153-X

    Article  CAS  PubMed  Google Scholar 

  • Gripp HS, Freitas JS, Almeida EA, Bisinoti MC, Moreira AB (2017) Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae). Ecotoxicol Environ Saf 136:173–179. https://doi.org/10.1016/j.ecoenv.2016.10.027

    Article  CAS  PubMed  Google Scholar 

  • Guillette LJ, Edwards TM (2005) Is nitrate an ecologically relevant endocrine disruptor in vertebrates? Integrat Comp Biol 45:19–27

    Article  CAS  Google Scholar 

  • Gurushankara HP, Krishnamurthy SV, Vasudev V (2007) Morphological normalities in natural populations of common frogs inhabiting agroecosystems of central Western Ghats. Appl Herpetol 4:39–45

    Article  Google Scholar 

  • Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement M (2014) OpenComet: An automated tool for comet assay image analysis. Red Biol 2:457–465. https://doi.org/10.1016/j.redox.2013.12.020

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, Vonk A (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. PNAS 99:5476–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). PNAS 107:4612–4617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecnar SJ (1995) Acute and chronic toxicity of ammonium nitrate fertilizer to amphibians from southern Ontario. Environ Toxicol Chemist 14:2131–2137

    Article  CAS  Google Scholar 

  • Hipolito M, Martins AMCRPF, Bach EE (2004) Aspectos bioquímicos em fígado de rãs-touro (Rana Catesbeiana Shaw, 1802) sadias e doentes. Arquiv Instit Biol 71:147–153

    Google Scholar 

  • Iganci JRV, Heiden G, Miotto STS, Pennington RT (2011) Campos de cima da serra: the brazilian subtropical highland grasslands show an unexpected level of plant endemism. Bot J Linn 167:378–393

    Article  Google Scholar 

  • Ilha P, Schiesari L (2014) Lethal and sublethal effects of inorganic nitrogen on gladiator frog tadpoles (Hypsiboas faber, Hylidae). Copeia 2:221–230. https://doi.org/10.1643/OT-13-117

    Article  Google Scholar 

  • Iop S, Assmann BR, Santos TG, Cechin SZ (2015) Biodiversidade de anfíbios. In: Pillar VP, Lange O (eds) Campos do Sul. Rede Campos Sulinos – UFRGS, Porto Alegre, pp 71–80.

  • Iop S, Santos TG, Cechin SZ (2016) Anfíbios anuros dos Campos Sulinos: espécies com ocorrência nas áreas campestres do Pampa e da Mata Atlântica. Porto Alegre: Rede Campos Sulinos – UFRGS, p. 22.

  • Jensen FB (2003) Nitrite disrupts multiple physiological functions in aquatic animals. Comp Biochem Physiol A Mol Integr Physiol 135:9–24. https://doi.org/10.1016/S1095-6433(02)00323-9

    Article  CAS  PubMed  Google Scholar 

  • Jofre MB, Karasov WH (1999) Direct effect of ammonia on three species of north american anuran amphibians. Environ Toxicol Chemist 18:1806–1812

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Braunbeck T, Hollert H (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res/genet Toxicol Environ Mutag 650:1–14. https://doi.org/10.1016/j.mrgentox.2007.09.009

    Article  CAS  Google Scholar 

  • Krishnamurthy SV, Meenakumar D, Gurushankara HP, Vasudev V (2008) Nitrate-induced morphological anomalies in the tadpoles of Nyctibatrachus major and Fejervarya limnocharis (Anura: Ranidae). Turk J Zool 32:239–244

    CAS  Google Scholar 

  • Lajmanovich RC, Peltzer MTS (2003) Induction of mortality and malformation in Scinax nasicus tadpoles exposed to glyphosate formulations. Bull Environ Contam Toxicol 70:612–618. https://doi.org/10.1007/s00128-003-0029-x

    Article  CAS  PubMed  Google Scholar 

  • Lajmanovich RC, Cabagna M, Peltzer PM, Stringhini GA, Attademo AM (2005) Micronucleus induction in erythrocytes of the Hyla pulchella tadpoles (Amphibia: hylidae) exposed to insecticide endosulfan. Mutat Res/genet Toxicol Environ Mutag 587:67–72. https://doi.org/10.1016/j.mrgentox.2005.08.001

    Article  CAS  Google Scholar 

  • Larsen K, Najle R, Lifschitzb A, Virkelb G (2012) Effects of sub-lethal exposure of rats to the herbicide glyphosate in drinking water: Glutathione transferase enzyme activities, levels of reduced glutathione and lipid peroxidation in liver, kidneys and small intestine. Environ Toxicol Pharmacol 34:811–818. https://doi.org/10.1016/j.etap.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  • Lee SR (2018) critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev 2018:11. https://doi.org/10.1155/2018/9156285

    Article  CAS  Google Scholar 

  • Liu W, Wang C, Wang T, Fellers GM, Lai B, Kam Y (2011) Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan. Ecotoxicology 20:377–384. https://doi.org/10.1007/s10646-010-0589-6

    Article  CAS  PubMed  Google Scholar 

  • Loureiro RC, Menegat MN, Restello RM, Hepp LU (2018) Incorporation of zinc and copper by insects of different functional feeding groups in agricultural streams. Environ Sci Pollut Res 25:17402–17408. https://doi.org/10.1007/s11356-018-1971-9

    Article  CAS  Google Scholar 

  • Loureiro RC, Calisto JFF, Dal Magro J, Restello RM, Hepp LU (2021) The influence of the environment in the incorporation of copper and cadmium in scraper insects. Environ Monit Assess 193:215. https://doi.org/10.1007/s10661-021-08997-0

    Article  CAS  PubMed  Google Scholar 

  • Luza AL, Gonçalves GL, Bolzan A, Hartz SM (2015) Biodiversidade de Mamíferos. In: Pillar VP, Lange O (eds) Campos do Sul. Rede Campos Sulinos – UFRGS, Porto Alegre, 101–114.

  • Magnusson WE, Grelle CEV, Marques MCM, Rocha CFD, Dias B, Fontana CS, Bergallo H, Overbeck GE, Vale MM, Tomas WM, Cerqueira R, Collevatti R, Pillar VD, Malabarba LR, Lins-e-Silva AC, Neckel-Oliveira S, Martinelli B, Akama A, Rodrigues D, Silveira LF, Scariot A, Fernandes GW (2018) Effects of Brazil’s political crisis on the science needed for biodiversity conservation. Front Ecol Evolut 6:163. https://doi.org/10.3389/fevo.2018.00163

    Article  Google Scholar 

  • Manly BJ (2008) Métodos estatísticos multivariados: uma introdução. Porto Alegre: Bookman.

  • Marco A, Blaustein AR (1999) The effects of nitrite on behavior and metamorphosis in cascades frogs (Rana cascadae). Environ Toxicol 18:946–949

    Article  CAS  Google Scholar 

  • Marco A, Quilchano C, Blaustein AR (1999) Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific Northwest. Environ Toxicol Chemist 18:2836–2839

    CAS  Google Scholar 

  • Margarido TCS, Felício AA, Rossa-Feres DC, Almeida EA (2013) Biochemical biomarkers in Scinax fuscovarius tadpoles exposed to a commercial formulation of the pesticide fipronil. Mar Environ Res 91:61–67. https://doi.org/10.1016/j.marenvres.2013.02.001

    Article  CAS  Google Scholar 

  • McLean BWH, Rodgers E (2023) Deteriorating waterways: The effect of nitrate pollution on the development and physiology of the endangered southern bell frog (Litoria raniformis). Aquat Toxicol 262:106670. https://doi.org/10.1016/j.aquatox.2023.106670

    Article  CAS  PubMed  Google Scholar 

  • Mikó Z, Ujszegi J, Hettyey A (2017) Age-dependent changes in sensitivity to a pesticide in tadpoles of the common toad (Bufo bufo). Aquat Toxicol 187:48–54. https://doi.org/10.1016/j.aquatox.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  • Molina MC, Roa-Fuentes CA, Zeni JO, Casatti L (2017) The effects of land use at different spatial scales on in stream features in agricultural streams. Limnologica 65:14–21. https://doi.org/10.1016/j.limno.2017.06.001

    Article  Google Scholar 

  • Motta AGC, Do Amaral DF, Benvindo-Souza M, Rocha TL, Silva DDM (2020) Genotoxic and mutagenic effects of zinc oxide nanoparticles and zinc chloride on tadpoles of Lithobates catesbeianus (Anura: Ranidae). Environ. Nanotechnol. Monit. Manag 14:100356. https://doi.org/10.1016/j.enmm.2020.100356

    Article  Google Scholar 

  • Mouchet F, Gauthier L, Baudrimont M, Gonzalez P, Mailhes C, Ferrier V, Devaux A (2007) Comparative evaluation of the toxicity and genotoxicity of cadmium in amphibian larvae (Xenopus laevis and Pleurodeles waltl) using the comet assay and the micronucleus test. Environ Toxicol 22:422–435. https://doi.org/10.1002/tox.20267

    Article  CAS  PubMed  Google Scholar 

  • Nikoloff N, Natale GS, Marino D, Soloneski S, Larramendy ML (2014) Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae). Ecotoxicol Environ Saf 100:275–281. https://doi.org/10.1016/j.ecoenv.2013.10.021

    Article  CAS  PubMed  Google Scholar 

  • Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VP, Blanco CC, Boldrini II, Both R, Forneck ED (2009) Os Campos Sulinos: um bioma negligenciado. In: Pillar VP, Müller SC, Castilhos ZMS, Jacques AV (eds) Campos Sulinos, conservação e uso sustentável da biodiversidade. Brasília, Ministério do Meio Ambiente, pp 26–41

    Google Scholar 

  • Overbeck GE, Vélez-Martin E, Scarano FR, Lewinsohn TM, Fonseca CR, Meyer ST, Müller SC, Ceotto P, Dadalt L, Durigan G, Ganade G, Gossner MM, Guadagnin DL, Lorenzen K, Jacobi CM, Weisser WW, Pillar VP (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distribut 21:1455–1460. https://doi.org/10.1111/ddi.12380

    Article  Google Scholar 

  • Owen JB, Butterfield DA (2010) Measurement of Oxidized/Reduced Glutathione Ratio. In: Bross P, Gregersen N (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology (Methods and Protocols), Humana Press, Totowa, NJ, pp 269–277

    Chapter  Google Scholar 

  • Paglia A, Fernandez FAS, Marco Jr P (2006) Efeitos da fragmentação de habitats: quantas espécies, quantas populações, quantos indivíduos, e serão eles suficientes? In: Rocha CFD (Org). Biologia da Conservação: essências. São Paulo: RIMA.

  • Peltzer PM, Lajmanovich RC, Sánchez-Hernandez JC, Cabagna MC, Attademo AM, Bassó A (2008) Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotoxicol Environ Saf 70:185–197. https://doi.org/10.1016/j.ecoenv.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  • Peltzer PM, Lajmanovich RC, Attademo AM, Junges CM, Cabagna-Zenklusen MC, Repetti MR, Sigrist ME, Beldoménico H (2013) Effect of exposure to contaminated pond sediments on survival, development, and enzyme and blood biomarkers in veined treefrog (Trachycephalus typhonius) tadpoles. Ecotoxicol Environ Saf 98:142–151. https://doi.org/10.1016/j.ecoenv.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  • Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MM, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. https://doi.org/10.1126/science.1196624

    Article  CAS  PubMed  Google Scholar 

  • Pillar VP, Müller SC, Castilhos ZDS, Jacques AVA (2009) Campos Sulinos: conservação e uso sustentável da biodiversidade. MMA, Brasília/DF.

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Tren Ecol Evolut 25:345–353. https://doi.org/10.1016/j.tree.2010.01.007

    Article  Google Scholar 

  • Primack RB, Rodrigues E (2001). Biologia da conservação. Londrina: Autor.

  • Quiroga LB, Sanabria EA, Fornés MW, Bustos DA, Tejedo M (2019) Sublethal concentrations of chlorpyrifos induce changes in the thermal sensitivity and tolerance of anuran tadpoles in the toad Rhinella arenarum? Chemosphere 219:671–677. https://doi.org/10.1016/j.chemosphere.2018.12.059

    Article  CAS  PubMed  Google Scholar 

  • Ralph S, Petras M (1997) Genotoxicity monitoring of small bodies of water using two species of tadpoles and the alkaline single cell gel (comet) assay. Environ Mol Mutag 29:418–430. https://doi.org/10.1002/(SICI)1098-2280(1997)29:43.0.CO;2-H

    Article  CAS  Google Scholar 

  • Ransom KM, Nolan BT, Stackelberg PE, Belitz K, Fram MS, Reddy JE, Johnson TD, Rodriguez O (2021) Data for machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States: US. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.151065

    Article  PubMed  Google Scholar 

  • Reed MS, Buenemann M, Atlhopheng J, Akhtar-Schuster M, Bachmann F, Bastin G, Bigas H, Chanda R, Dougill AJ, Essahli W, Evely AC, Fleskens L, Geeson N, Glass JH, Hessel R, Holden J, Ioris AAR, Kruger B, Liniger HP, Mphinyane W, Nainggolan D, Perkins J, Raymond CM, Ritsema CJ, Schwilch G, Sebego R, Seely M, Stringer LC, Thomas R, Twomlow S, Verzandvoort S (2011) Cross-scale monitoring and assessment ofland degradation and sustainable land management: amethodological framework for knowledge management. Land Degrad Dev 22:261–271. https://doi.org/10.1002/ldr.1087

    Article  Google Scholar 

  • Saccol SSA, Bolzan AMR, Santos TG (2017) In the shadow of trees: does eucalyptus afforestation reduce herpetofaunal diversity in Southern Brazil? S Am J Herpetol 12:42–56. https://doi.org/10.2994/SAJH-D-16-00028.1

    Article  Google Scholar 

  • Saccol SSA, Ucha LCD, Madalozzo B, Cechin SZ, Santos TG (2021) Influence of land use on the diversity of pond-breeding anurans in South Brazilian grasslands. Biodivers Conserv. https://doi.org/10.1007/s10531-021-02317-1

    Article  Google Scholar 

  • Samarakoon HMTR, Pathiratne A (2017) Survival and cholinesterase activity of Asian common toad (Duttaphrynus melanostictus) tadpoles following short term exposure to a carbosulfan-based pesticide. Sri Lanka J Aquat Sci 22:29–37. https://doi.org/10.4038/sljas.v22i1.7514

    Article  Google Scholar 

  • Santos TG, Iop S, Alves SS (2014) Anfíbios dos Campos Sulinos: diversidade, lacunas de conhecimento, desafios para a conservação e perspectivas. Herpetol Bras 2:51–59

    Google Scholar 

  • Santos TG, Melo R, Costa-Silva DG, Nunes MEM, Rodrigues NR, Franco JL (2015) Assessment of water pollution in the Brazilian Pampa biome by means of stress biomarkers in tadpoles of the leaf frog Phyllomedusa iheringii (Anura: Hylidae). PeerJ 3:1–13. https://doi.org/10.7717/peerj.1016

    Article  Google Scholar 

  • Schiesari LC (2004) Performance tradeoffs across resource gradients in anuran larvae. Unpubl. Ph.D. diss, University of Michigan

    Google Scholar 

  • Silva PR, Borges-Martins M, Oliveira GT (2021) Melanophryniscus admirabilis tadpoles’ responses to sulfentrazone and glyphosate-based herbicides: an approach on metabolism and antioxidant defenses. Environ Sci Pollut Res 28:4156–4172. https://doi.org/10.1007/s11356-020-10654-x

    Article  CAS  Google Scholar 

  • StatSoft INC (2007) Statistica (data analysis software system), version 8. www.statsoft.com.

  • Staude IR, Vélez-Martin E, Andrade BO, Podgaiski LR, Boldrini II, Mendonça M, Pillar VP, Overbeck GE (2018) Local biodiversity erosion in south Brazilian grasslands under moderate levels of landscape habitat loss. J Appl Ecol 55:1241–1251. https://doi.org/10.1111/1365-2664.13067

    Article  Google Scholar 

  • Strandberg MT, Scott-Fordsmand JJ (2002) Field effects of simazine at lower trophic levels: a review. Sci Total Environ 296:117–137

    Article  CAS  PubMed  Google Scholar 

  • Stuart SN, Hoffmann M, Chanson JS, Cox NA, Berridge RJ, Ramani P, Young BE (2008) Threatened Amphibians of the World. Lynx Edicions, Barcelona, Spain; IUCN, Gland, Switzerland; and Conservation International, Arlington, Virginia, USA.

  • Sule RO, Condon L, Gomes AV (2022) A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. Oxid Med Cell Longev 2022:31. https://doi.org/10.1155/2022/5563759

    Article  CAS  Google Scholar 

  • Svartz GB, Pérez-Coll CS (2013) Comparative toxicity of cypermethrin and a commercial formulation on Rhinella arenarum larval development (Anura: Bufonidae). Int J Environ Health 6:320–329. https://doi.org/10.1504/IJENVH.2013.056973

    Article  CAS  Google Scholar 

  • Thabah CM, Devi LM, Hooroo RNK, Dey S (2018) Morphological alterations in the external gills of some tadpoles in response to pH. J Morphol Sci 35:142–152. https://doi.org/10.1055/s-0038-1669476

    Article  Google Scholar 

  • Vélez-Martin E, Rocha CH, Blanco C, Azambuja BO, Hasenack H, Pillar VP (2015) Conversão e Fragmentação. In: Pillar VP, Lange O (eds) Campos do Sul. Rede Campos Sulinos – UFRGS, Porto Alegre, 101–114.

  • Verrastro L, Borges-Matins M (2015) Biodiversidade de Répteis. In: Pillar VP, Lange O (eds) Campos do Sul. Rede Campos Sulinos – UFRGS, Porto Alegre, pp 81–90.

  • Welch NE, MacMahon JA (2005) Identifying habitat variables important to the rare Columbia Spotted Frog in Utah (U.S.A.): an information-theoretic approach. Conserv Biol 19:473–481. https://doi.org/10.1111/j.1523-1739.2005.00384.x

    Article  Google Scholar 

  • Yang S, Zhou D, Yu H, Wei R, Pan B (2013) Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China. Environ Pollut 177:64–70. https://doi.org/10.1016/j.envpol.2013.01.044

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Zhu G, Li XB, Liu S (2009) Genotoxicity evaluation of chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by Comet assay and Micronucleus test. Mutat Res/genet Toxicol Environ Mutag 680:2–6. https://doi.org/10.1016/j.mrgentox.2009.05.018

    Article  CAS  Google Scholar 

  • Zar JH (2010) Biostatistical analyses. Prentice Hall, New Jersey, USA

    Google Scholar 

Download references

Acknowledgements

We thank the Chico Mendes Institute for Biodiversity Conservation (ICMBio/SISBIO) for the collection licenses (No. 71108-3) and CEUA/Unochapecó (No. 001/2020). FLF received support from the National Council for Scientific and Technological Development (CNPq No. 314565/2020-5) and Coordination for the Improvement of Higher Education Personnel (CAPES, Finance Code 001). EML received support from the National Council for Scientific and Technological Development (CNPq/ICMBio/FAPs No.18/2017, under grant term No. 421298/2017-0). JDM and FZ received support from FAPESC (grant number 04/2019 TO No 2020TR735). We thank Joel Granemann de Mello (in memoriam) for assistance with accommodations in the field activities. Dr. A. Leyva (USA) provided English editing of the manuscript.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico/Instituto Chico Mendes de Biodiversidade/FAPs (grant number 18/2017 and grant term number 421298/2017–0), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (grant number 04/2019 TO No. 2020TR735), Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant number 314565/2020–5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

VIMB: Substantial contribution in the concept and design of the study; contribution to data collection; contribution to data analysis and interpretation; contribution to manuscript preparation; contribution to critical revision, adding intellectual content. MRS: Substantial contribution in the concept and design of the study; contribution to data collection; contribution to data analysis and interpretation; contribution to manuscript preparation; contribution to critical revision, adding intellectual content. JLF: Substantial contribution in the concept and design of the study; contribution to data collection contribution to data analysis and interpretation; contribution to manuscript preparation; contribution to critical revision, adding intellectual content. FZ: Substantial contribution in the concept and design of the study; contribution to data collection; contribution to data analysis and interpretation; contribution to manuscript preparation; contribution to critical revision, adding intellectual content. JDM: Substantial contribution in the concept and design of the study; contribution to data collection; contribution to data analysis and interpretation; contribution to manuscript preparation; contribution to critical revision, adding intellectual content. EML: Substantial contribution in the concept and design of the study; contribution to data collection; contribution to data analysis and interpretation; contribution to manuscript preparation; contribution to critical revision, adding intellectual content. TGS: Substantial contribution in the concept and design of the study; contribution to data collection; contribution to data analysis and interpretation; contribution to manuscript preparation; contribution to critical revision, adding intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Veluma Ialú Molinari De Bastiani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The Chico Mendes Institute for Biodiversity Conservation (ICMBio/SISBIO) for the collection licenses (No. 71108–3) and Animal Ethics Committee/Unochapecó (CEUA No. 001/2020).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to correction in figure 1.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 316 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bastiani, V.I.M., Spies, M.R., Franco, J.L. et al. Agro is not cool: DNA damage and oxidative stress in anurans evidencing the devastation of subtropical grasslands. Aquat Sci 86, 2 (2024). https://doi.org/10.1007/s00027-023-01016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-023-01016-z

Keywords

Navigation