Skip to main content

Overview of Microbial Associations and Their Role Under Aquatic Ecosystems

  • Chapter
  • First Online:
Current Status of Fresh Water Microbiology

Abstract

Water plays a vital role in regulating the lives of living beings on earth. Life cannot be imagined without water. Aquatic plants inhabit the littoral or shallow water zones of waterbodies like river, ponds, lakes, and oceans. These plants exhibit a mutual coexistence, pathogenic infestation, commensalism, or in symbiotic association with the microbes. These plants also serve as powerful tools for removal of contaminants in the form of heavy metals in water and soil sediments. The phyllosphere consists of various microbes such as bacteria, viruses, protists, ecto- and endoparasites, nematodes, protozoa, etc. Although the zone between the microbes and roots of aquatic plants is not well defined in terms of nutrients due to their diffusion in water, still there exists a zone of interaction between them. Microbes coevolved with the plants for the fulfillment of their nutrient deficiencies in their fundamental niches. Thus, the aquatic micro biome plays a vital role in influencing and promoting the aquatic ecosystem. The plant–microbe interaction is also affected by the environment: both biotic and abiotic factors have a concomitant effect on the marine ecosystem, thereby leading to change at molecular and gene expression levels causing production of compounds by these microbial–host–environmental interactions. This chapter focuses on how the aquatic microbiomes influence the structure, growth of plants, and their diversity. It also encompasses the the molecular strategy adopted for production of metabolites and biofilm, siderophores, system of quorum sensing, cell to cell signaling, signal transduction, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170:791–797

    Article  PubMed  Google Scholar 

  • Adalbjörnsson BV, Jonsdottir R (2015) Enzyme-enhanced extraction of antioxidant ingredients from algae. In: Natural products from marine algae. Springer, New York, pp 145–150

    Chapter  Google Scholar 

  • Adams DG, Bergman BIRGITTA, Nierzwicki-Bauer SA, Rai AN, Schüßler A (2006) Cyanobacterial-plant symbioses. In: The prokaryotes: a handbook on the biology of bacteria, vol 1. Springer, New York, pp 331–363

    Chapter  Google Scholar 

  • Admassu H, Gasmalla MAA, Yang R, Zhao W (2018) Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci 83(1):6–16

    Article  PubMed  Google Scholar 

  • Agri U, Chaudhary P, Sharma A (2021) In vitro compatibility evaluation of agriusable nanochitosan on beneficial plant growth-promoting rhizobacteria and maize plant. Natl Acad Sci Lett 44:555–559

    Article  Google Scholar 

  • Agri U, Chaudhary P, Sharma A, Kukreti B (2022) Physiological response of maize plants and its rhizospheric microbiome under the influence of potential bioinoculants and nanochitosan. Plant and Soil 474:451

    Article  Google Scholar 

  • Agunbiade FO, Olu-Owolabi BI, Adebowale KO (2009) Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Bioresour Technol 100:4521–4526

    Article  PubMed  Google Scholar 

  • Aleklett K, Hart M, Shade A (2014) The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253–266. https://doi.org/10.1139/cjb-2013-0166

    Article  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Marafie M et al (2010) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour Technol 101:5786–5792

    Article  PubMed  Google Scholar 

  • Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182

    Article  PubMed  PubMed Central  Google Scholar 

  • Arber A (1920) A study of aquatic angiosperms. Cambridge University Press, Cambridge, 436p

    Book  Google Scholar 

  • Bamidele JF, Nyamali B (2008) Ecological studies of the Ossiomo river with reference to the macrophytic vegetation. Res J Bot 3(1):29–34

    Article  Google Scholar 

  • Barko JW, Adams MS, Clesceri NL (1986) Environmental factors and their consideration in the management of submerged aquatic vegetation: a review. J Aquat Plant Manage 24:1–10

    Google Scholar 

  • Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183:6852–6861

    Article  PubMed  PubMed Central  Google Scholar 

  • Barragán BE, Costa C, Marquez MC (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigm 75(1):73–81

    Article  Google Scholar 

  • Bast F (2013) Agronomy and cultivation methods for edible seaweeds. Int J Agric Food Sci Technol 4(7):661–666

    Google Scholar 

  • Bergelson J, Mittelstrass J, Horton MW (2019) Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Sci Rep 9:24. https://doi.org/10.1038/s41598-018-37208-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergholz PW, Noar JD, Buckley DH (2011) Environmental patterns are imposed on the population structure of Escherichia coli after fecal deposition. Appl Environ Microbiol 77(1):211–219

    Article  PubMed  Google Scholar 

  • Biesboer DD (1984) Nitrogen fixation associated with natural and cultivated stands of Typha latifolia L. (Typhaceae). Am J Bot 71(4):505–511

    Article  Google Scholar 

  • Bing H, Felix GA, Xiaoying M et al (2019) Epiphytic bacterial community shift drives the nutrient cycle during Potamogeton malaianus decomposition. Chemosphere 236:124253

    Article  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Blindow A, Hargeby A, Hilt S (2014) Facilitation of clear-water conditions in shallow lakes by macrophytes: Differences between charophyte and angiosperm dominance. Hydrobiologia 737:99–110

    Article  Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49:740–749

    Article  PubMed  Google Scholar 

  • Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14

    Article  Google Scholar 

  • Boutin C, Keddy PA (1993) A functional classification of wet land plants. J Veg Sci 4:591–600

    Article  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Article  Google Scholar 

  • Brock MA, Casanova MT (1997) Plant life at the edges of wetlands: ecological responses to wetting and drying patterns. In: Klomp NI, Lunt ID (eds) Frontiers in ecology: building the links. Elsevier Science, Oxford, pp 181–192

    Google Scholar 

  • Brönmark C, Hansson LA (2017) The biology of lakes and ponds, 3rd edn. Oxford University Press, Oxford, 368p

    Book  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submerged macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Castella E, Richardot-Coulet M, Roux C, Richoux P (1984) Macro-invertebrates as describers of morphological and hydrological types of aquatic ecosystems abandoned by the Rhone River. Hydrobiologia 119:219–226

    Article  Google Scholar 

  • Cermeno M, Stack J, Tobin P, O’Keeffe MB, Harnedy PA, Stengel D, FitzGerald RJ (2019) Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct 10(6):3421–3429

    Article  PubMed  Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2007) Global diversity of aquatic macrophytes in freshwater. In: Balian EV, Lévêque C, Segers H, Martens K (eds) Freshwater animal diversity assessment. Developments in hydrobiology, vol 198. Springer, Dordrecht

    Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 198:9–26

    Article  Google Scholar 

  • Chanton J, Chaser L, Glasser P, Siegel D (2005) Carbon and hydrogen isotopic effects in microbial, methane from terrestrial environments. In: Stable isotopes and biosphere - atmosphere interactions: processes and biological controls, pp 85–112. https://doi.org/10.1016/B978-012088447-6/50006-4

    Chapter  Google Scholar 

  • Chao C, Wang L, Li Y, Yan Z, Liu H, Yu D, Liu C (2021) Response of sediment and water microbial communities to submerged vegetations restoration in a shallow eutrophic lake. Sci Total Environ 801:149701

    Article  PubMed  Google Scholar 

  • Chaudhary P, Khati P, Chaudhary A, Gangola S, Kumar R, Sharma A (2021a) Bioinoculation using indigenous Bacillus spp improves growth and yield of Zea mays under the influence of nanozeolite. 3Biotech 11:11

    Google Scholar 

  • Chaudhary P, Khati P, Chaudhary A, Maithani D, Kumar G, Sharma A (2021b) Cultivable and metagenomic approach to study the combined impact of nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizospheric microbiome. PloS One 16:e0250574

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary P, Khati P, Gangola S, Kumar A, Kumar R, Sharma A (2021c) Impact of nanochitosan and Bacillus spp on health, productivity and defence response in Zea mays under field condition. 3Biotech 11:237

    Google Scholar 

  • Chaudhary P, Chaudhary A, Parveen H, Rani A, Kumar G, Kumar A, Sharma A (2021d) Impact of nanophos in agriculture to improve functional bacterial community and crop productivity. BMC Plant Biol 21:519

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary P, Chaudhary A, Bhatt P, Kumar G, Khatoon H, Rani A, Kumar S, Sharma A (2022) Assessment of soil health indicators under the influence of nanocompounds and Bacillus spp. in field condition. Front Environ Sci 9:769871

    Article  Google Scholar 

  • Chen J, Zhang H, Han Z, Ye J, Liu Z (2012) The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecol Eng 42:130–133

    Article  Google Scholar 

  • Christensen PB, Revsbech NP, Sand-Jensen K (1994) Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora (L.) Ascherson. Plant Physiol 105:847–852

    Article  PubMed  PubMed Central  Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214

    PubMed  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook CDK (1999) The number and kinds of embryobearing plants which have become aquatic: a survey. Perspect Plant Ecol Evol Syst 2(1):79–102

    Article  Google Scholar 

  • Coombs JM, Barkay T (2005) New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Appl Environ Microbiol 71:7083–7091

    Article  PubMed  PubMed Central  Google Scholar 

  • De Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  Google Scholar 

  • DeBusk WF, Reddy KR (2005) Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry 75:217–240

    Article  Google Scholar 

  • Dhote S, Dixit S (2009) Water quality improvement through macrophytes – a review. Environ Monit Assess 152:149–153. https://doi.org/10.1007/s10661-008-0303-9. PMID: 18537050

    Article  PubMed  Google Scholar 

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474

    Article  Google Scholar 

  • Dixit SP et al (2021) Genome analyses revealed genetic admixture and selection signatures in Bos indicus. Sci Rep 11(1):1–11

    Article  Google Scholar 

  • Ebrahimbabaie P, Meeinkuirt W, Pichtel J (2020) Phytoremediation of engineered nanoparticles using aquatic plants: mechanisms and practical feasibility. J Environ Sci 93:151

    Article  Google Scholar 

  • Faist H, Keller A, Hentschel U, Deeken R (2016) Grapevine (Vitis vinifera) crown galls host distinct microbiota. Appl Environ Microbiol 82:5542–5552

    Article  PubMed  PubMed Central  Google Scholar 

  • Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850

    Article  PubMed  Google Scholar 

  • Figueira EM, Lima AI, Pereira SI (2005) Cadmiumtolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    Article  PubMed  Google Scholar 

  • Fink P (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar Freshw Behav Physiol 40(3):155–168

    Article  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M et al (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27(1):57–61

    Article  Google Scholar 

  • Frey B, Zierold K, Brunner I (2000) Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies–Hebeloma crustuliniforme ectomycorrhizas. Plant Cell Environ 23:1257–1265

    Article  Google Scholar 

  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant, Potamogeton natans. Chemosphere 63:220–227

    Article  PubMed  Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 79:197–203

    Article  Google Scholar 

  • Ghassemzadeh F, Yousefzadeh H, Arbab-Zavar MH (2008) Removing arsenic and antimony by Phragmites australis: rhizofiltration technology. J Appl Sci 8:1668–1675

    Article  Google Scholar 

  • Glazer AN (1994) Phycobiliproteinsda family of valuable, widely used fluorophores. J Appl Phycol 6(2):105–112

    Article  Google Scholar 

  • Golubev SN, Schelud’ko AV, Muratova AY, Makarov OE, Turkovskaya OV (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Pollut 198(1–4):5–16

    Article  Google Scholar 

  • Gonzalez LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66(4):1527–1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Gradstein R, Vanderpoorten A, Reenen G, van Cleef A (2018) Mass occurrence of the liverwort Herbertus sendtneri in a glacial lake in the Andes of Colombia. Rev Acad Colomb Cienc Exactas Fís Nat 42:221–229

    Article  Google Scholar 

  • Gu L, Wu J, Hua Z et al (2020) The response of nitrogen cycling and bacterial communities to E. coli invasion in aquatic environments with submerged vegetation. J Environ Manage 261:110204

    Article  PubMed  Google Scholar 

  • Gupta S, Abu-Ghannam N (2011) Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol 12(4):600–609

    Article  Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589

    Article  PubMed  Google Scholar 

  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:1118–1187

    Article  Google Scholar 

  • Harnedy PA, FitzGerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT Food Sci Technol 51(1):375–382

    Article  Google Scholar 

  • Hasegawa H, Chatterjee A, Cui Y, Chatterjee AK (2005) Elevated temperature enhances virulence of Erwinia carotovora subsp. Carotovora strain EC153 to plants and stimulates production of the quorum sensing signal, N-acyl homoserine lactone, and extracellular proteins. Appl Environ Microbiol 71:4655–4663

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffland E, Kuyper TW, Comans RN, Creamer RE (2020) Eco-functionality of organic matter in soils. Plant and Soil 455(1):1–22

    Article  Google Scholar 

  • Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222–226

    Article  Google Scholar 

  • Hossain K, Yadav S, Quaik S, Pant G, Maruthi AY, Ismail N (2017) Vulnerabilities of macrophytes distribution due to climate change. Theor Appl Climatol 129:1123–1132

    Article  Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chi Chang C (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  PubMed  Google Scholar 

  • Hrivnák R, Oťaheľová H, Jarolímek I (2006) Diversity of aquatic macrophytes in relation to environmental factors in the Slatina river (Slovakia). Biologia 61(4):413–419

    Article  Google Scholar 

  • Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol Microbiol 7:177–187

    Article  PubMed  Google Scholar 

  • Iqbal A, Mukherjee M, Rashid J et al (2019) Development of plant-microbe phytoremediation system for petroleum hydrocarbon degradation: an insight from alkb gene expression and phytotoxicity analysis. Sci Total Environ 671:696–704

    Article  PubMed  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364. https://doi.org/10.1007/s12229-009-9036-x

  • Jackson MB, Ishizawa K, Ito O (2009) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang J, Di D, Han D et al (2015) Dynamic changes in the population structure of Escherichia coli in the Yeongsan River basin of South Korea. FEMS Microbiol Ecol 11:123–125

    Google Scholar 

  • Jeppesen E, Søndergaard M (1999) Lake and catchment management in Denmark. Hydrobiologia 396:419–432

    Article  Google Scholar 

  • Jiang C-J, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23:791–798

    Article  PubMed  Google Scholar 

  • Jiang L, Zhu D, Chen Y et al (2015) Analysis on fecal coliform pollution in surface waters of China. Adv Sci Technol Water Resour 35(3):11–18. (In Chinese)

    Google Scholar 

  • Jiménez-Escrig A, Gomez-Ordõnez E, Rupérez P (2011) Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides. In: Advances in food and nutrition research, vol 64. Elsevier, Amsterdam, pp 325–337

    Google Scholar 

  • Jin S, Song YN, Deng WY, Gordon MP, Nester EW (1993) The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J Bacteriol 175:6830–6835

    Article  PubMed  PubMed Central  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    Article  Google Scholar 

  • Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:6395. https://doi.org/10.1126/science.aaf6395

    Article  Google Scholar 

  • Kadir K, Nelson KL (2014) Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water. Water Res 50(1):307–317

    Article  PubMed  Google Scholar 

  • Kadlec RH (2000) The inadequacy of first-order removal models. Ecol Eng 15:105–119

    Article  Google Scholar 

  • Kandel SL, Joubert PM, Doty SL (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms 5(4):77

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HK, Lee HH, Seo CH, Park Y (2019) Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar Drugs 17(6):350

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannikka B, Seesha CP, Subhasha SN (2018) Bioremediation by microalgae. In: Tripathi K, Rathor NK, Abraham G (eds) The role of photosynthetic microbes in agriculture and industry. Nova Science, Hauppauge, pp 151–172

    Google Scholar 

  • Kessler AJ, Wawryk M, Marzocchi U, Roberts KL, Wong WW, Risgaard Petersen N, Meysman FJ, Glud RN, Cook PL (2019) Cable bacteria promote DNRA through iron sulfide dissolution. Limnol Oceanogr 64:1228–1238

    Article  Google Scholar 

  • Khalid S, Abbas M, Saeed F, Bader-Ul-Ain H, Suleria HAR (2018) Therapeutic potential of seaweed bioactive compounds. In: Seaweed biomaterials. IntechOpen, London

    Google Scholar 

  • Khati P, Parul Bhatt P, Nisha Kumar R, Sharma A (2018) Effect of nanozeolite and plant growth promoting rhizobacteria on maize. 3Biotech 8:141

    Google Scholar 

  • Khellaf N, Zerdaoui M (2009) Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresour Technol 100:6137–6140

    Article  PubMed  Google Scholar 

  • Kim H, Ridenour JB, Dunkle LD, Bluhm BH (2011a) Regulation of stomatal tropism and infection by light in Cercospora zeae-maydis: evidence for coordinated host/pathogen responses to photoperiod? PLoS Pathog 7:e1002113

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J-K, Cho ML, Karnjanapratum S, Shin I-S, You SG (2011b) In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Int J Biol Macromol 49(5):1051–1058

    Article  PubMed  Google Scholar 

  • Kraemer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:1–9. Interesting recent review discussing phytoextraction and transgenic plants, and modern genetic approaches to phytoremediation

    Google Scholar 

  • Kristanti F, Rahayu S, Huda A (2016) The determinant of financial distress on Indonesian family firm. Procedia Soc Behav Sci 219:440–447. https://doi.org/10.1016/j.sbspro.2016.05.018

    Article  Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. In: Life at interfaces and under extreme conditions. Springer, Dordrecht, pp 1–24

    Google Scholar 

  • Kumar G, Suman A, Lal S, Ram RA, Bhatt P, Pandey G, Chaudhary P, Rajan S (2021a) Bacterial structure and dynamics in mango (Mangifera indica) orchards after long term organic and conventional treatments under subtropical ecosystem. Sci Rep 11:20554

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar G, Lal S, Maurya SK, Bhattacherjee AK, Chaudhary P, Gangola S et al (2021b) Exploration of Klebsiella pneumoniae M6 for paclobutrazol degradation, plant growth attributes, and biocontrol action under subtropical ecosystem. PloS One 16(12):e0261338

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumwimba MN, Meng F (2019) Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: a review. Sci Total Environ 659:419–441

    Article  Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–478

    Article  PubMed  Google Scholar 

  • Le HT, Ho CT, Trinh QH et al (2016) Responses of aquatic bacteria to terrestrial runoff: effects on community structure and key taxonomic groups. Front Microbiol 7:889

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589–596

    Article  PubMed  Google Scholar 

  • Li FM, Hu HY (2005) Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl Environ Microbiol 71(11):6545–6553

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhao HP, Hao HL et al (2011) Enhancement of nutrient removal from eutrophic water by a plant-microorganisms combined system. Environ Eng Sci 28:543–554

    Article  Google Scholar 

  • Li G, Hu S, Hou H, Kimura S (2019) Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants. Plants 8:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Jian-yi W, Hua Z-l (2021) Benthic prokaryotic microbial community assembly and biogeochemical potentials in E. coli - stressed aquatic ecosystems during plant decomposition. Environ Pollut 275:116643

    Article  Google Scholar 

  • Lin CS, Lin YH, Wu JT (2012) Biodiversity of the epiphyllous algae in a chamaecyparis forest of northern Taiwan. Bot Stud 53:489–499

    Google Scholar 

  • Lu H, McClung CR, Zhang C (2017) Tick tock: circadian regulation of plant innate immunity. Annu Rev Phytopathol 55:287–311

    Article  PubMed  Google Scholar 

  • Lu Y, Kronzucker HJ, Shi W (2021) Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. Environ Pollut 287:117587

    Article  PubMed  Google Scholar 

  • Maal-Bared R, Bartlett KH, Bowie WR et al (2013) Phenotypic antibiotic resistance of Escherichia coli and E. coli O157 isolated from water, sediment and biofilms in an agricultural watershed in British Columbia. Sci Total Environ 443:315–323

    Article  PubMed  Google Scholar 

  • Maberly SC, Madsen TV (2002) Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29:393–405

    Article  PubMed  Google Scholar 

  • Mähnert B, Schagerl M, Krenn L (2017) Allelopathic potential of stoneworts. Fottea Olomouc 17(2):137–149

    Article  Google Scholar 

  • Mallon CA, Elsas JDV, Salles JF (2015) Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol 23(11):719–729

    Article  PubMed  Google Scholar 

  • Mallon CA, Roux XL, Doorn GSV et al (2018) The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J 12(3):728

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzar N, Singh Y, Kashyap AS, Sahu PK, Rajawat MVS, Bhowmik A et al (2021) Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolour L.) from Tarai and hill regions of India. Biol Control 152:1049–9644

    Article  Google Scholar 

  • Megateli S, Semsari S, Couderchet M (2009) Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 72:1774–1780

    Article  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  Google Scholar 

  • Mendonça R, Müller RA, Clow D et al (2017) Organic carbon burial in global lakes and reservoirs. Nat Commun 8:1694

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Cozatl DG, Moreno-Sanchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238:919–936

    Article  PubMed  Google Scholar 

  • Meshram BG, Chaugule BB (2018) An introduction to cyanobacteria: diversity and potential applications. In: Tripathi K, Rathor NK, Abraham G (eds) The role of photeosynthetic microbes in agriculture and industry, Nova Science Publisher, pp 1–39

    Google Scholar 

  • Mian MH (2002) Azobiofer: a technology of production and use of Azolla as biofertiliser for irrigated rice and fish cultivation. In: Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 45–54

    Google Scholar 

  • Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PM, Gotz B, Kupper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype). Plant Physiol 151:715–731

    Article  PubMed  PubMed Central  Google Scholar 

  • Miler O, Albayrak I, Nikora V, O’Hare M (2014) Biomechanical properties and morphological characteristics of lake and river plants: implications for adaptations to flow conditions. Aquat Sci 76(4):465–481

    Article  Google Scholar 

  • Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mater 164:1059–1063

    Article  PubMed  Google Scholar 

  • Mohapatra B, Phale PS (2021) Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for bioremediation. Front Bioeng Biotechnol 9:144

    Article  Google Scholar 

  • Mondav R, Mccalley CK, Hodgkins SB et al (2017) Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient. Environ Microbiol 19(8):3201

    Article  PubMed  Google Scholar 

  • Montalbán B, Thijs S, Lobo MC, Weyens N, Ameloot M, Vangronsveld J et al (2017) Cultivar and metal-specific effects of endophytic bacteria in Helianthus tuberosus exposed to Cd and Zn. Int J Mol Sci 18:2026. https://doi.org/10.3390/ijms18102026

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales-Olmedo M, Ortiz M, Sellés G (2015) Effects of transient soil waterlogging and its importance for rootstock selection. Chil J Agric Res 75:45–56

    Article  Google Scholar 

  • Mouget JL, Dakhama A, Lavoie MC, de la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18(1):35–43

    Article  Google Scholar 

  • Murakami M, Nakagawa F, Ae N, Ito M, Arao T (2009) Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain. Environ Sci Technol 43:5878–5883

    Article  PubMed  Google Scholar 

  • Mwimba M, Karapetyan S, Liu L, Marqués J, McGinnis EM, Buchler NE, Dong X (2018) Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nat Commun 9:4290

    Article  PubMed  PubMed Central  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 781:1–27

    Google Scholar 

  • Okolie CL, Mason B, Critchley AT (2018) Seaweeds as a source of proteins for use in pharmaceuticals and high-value applications. In: Novel proteins for food, pharmaceuticals, and agriculture: sources, applications, and advances. Wiley, Hoboken, p 217

    Chapter  Google Scholar 

  • Ontañon OM, González PS, Ambrosio LF et al (2014) Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. Int Biodeter Biodegr 88:192–198

    Article  Google Scholar 

  • Opuszynski K, Shireman JV (1995) Herbivorous fishes: culture and use for weed management. In cooperation with James E. Weaver, Director of the United States Fish and Wildlife Service’s National Fisheries Research Center. CRC Press, Boca Raton

    Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. BioScience 56(12):987–996

    Article  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716. https://doi.org/10.1139/w06-023

    Article  PubMed  Google Scholar 

  • Pages D, Rose J, Conrod S, Cuine S, Carrier P, Heulin T, Achouak W (2008) Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One 3:e1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Pal GK, Suresh PV (2016) Sustainable valorisation of seafood by-products: recovery of collagen and development of collagen-based novel functional food ingredients. Innov Food Sci Emerg Technol 37(part B):201–215. https://doi.org/10.1016/j.ifset.2016.03.015

    Article  Google Scholar 

  • Pal GK, Suresh PV (2017) Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Mater Sci Eng C 70:32–40

    Article  Google Scholar 

  • Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28:299–314

    Article  Google Scholar 

  • Pandey VC, Singh JS, Singh DP, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11(1):241–250

    Article  Google Scholar 

  • Pangestuti R, Kim S-K (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3(4):255–266

    Article  Google Scholar 

  • Pangestuti R, Kim S-K (2015) Seaweed proteins, peptides, and amino acids. In: Seaweed sustainability. Elsevier, Amsterdam, pp 125–140

    Chapter  Google Scholar 

  • Peng Y, Hu J, Yang B, Lin X-P, Zhou X-F, Yang X-W, Liu Y (2015) Chemical composition of seaweeds. In: Seaweed sustainability. Elsevier, Amsterdam, pp 79–124

    Chapter  Google Scholar 

  • Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14(3):52

    Article  PubMed  PubMed Central  Google Scholar 

  • Perreault R, Laforest-Lapointe I (2022) Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. ISME J 16:339–345

    Article  PubMed  Google Scholar 

  • Perrin C, Briandet R, Jubelin G, Lejeune P, Mandrand- Berthelot MA, Rodrigue A, Dorel C (2009) Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli. Appl Environ Microbiol 75:1723–1733

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieczynska E, Ozimek T (1976) Ecological significance of macrophytes. Int J Ecol Environ Sci 2:115–128

    Google Scholar 

  • Pooja K, Rani S, Prakash B (2017) In silico approaches towards exploration of rice bran proteins derived angiotensin-I-converting enzyme inhibitory peptides. Int J Food Prop 20:2178–2191

    Google Scholar 

  • Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants — biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321. Review of phytoremediation technologies that includes list of known bacteria, algae, lichens, fungi, and plants that show resistance to metals and have potential applications for metal removal from the environment

    Article  Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzalka K (2001) Physiological responses of Lemna triscula L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889

    Article  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratiksha B, Madhusmita M, Kim JY et al (2020) Benthic archaeal community structure and carbon metabolic profiling of heterotrophic microbial communities in brackish sediments. Sci Total Environ 706:135709

    Article  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69:493–499

    Article  PubMed  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to aquatic macrophytes. Crit Rev Env Sci Technol 39:697–753. Detailed review of phytoremediation focusing on heavy metals and aquatic plants. Highlights advantages of phytoremediation for use in aquatic systems over conventional technologies and several hypotheses as to why plants hyperaccumulate metals

    Article  Google Scholar 

  • Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli industrial region, India. Environ Monit Assess 148:75–84

    Article  PubMed  Google Scholar 

  • Rani S, Pooja K (2018) Elucidation of structural and functional characteristics of collagenase from Pseudomonas aeruginosa. Process Biochem 64:116–123

    Article  Google Scholar 

  • Rani S, Pooja K, Pal GK (2018) Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: computational derived approaches for bioactivity determination. Trends Food Sci Technol 80:61–70

    Article  Google Scholar 

  • Reinhold-Hurek B, Bunger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    Article  PubMed  Google Scholar 

  • Reitsema RE, Meire P, Schoelynck J (2018) The future of freshwater macrophytes in a changing world: dissolved organic carbon quantity and quality and its interactions with macrophytes. Front Plant Sci 9:629

    Article  PubMed  PubMed Central  Google Scholar 

  • Rejmánková E (2011) The role of macrophytes in wetland ecosystems. J Ecol Field Biol 34(4):333–345

    Google Scholar 

  • Rejmankova E (2011) The role of macrophytes in wetland ecosystems. J Ecol Field Biol 34(4):333–345

    Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  Google Scholar 

  • Rocha MIA, Recknagel F, Minoti RT et al (2019) Assessing the effect of abiotic variables and zooplankton on picocyanobacterial dominance in two tropical mesotrophic reservoirs by means of evolutionary computation. Water Res 149:120–129

    Article  PubMed  Google Scholar 

  • Roger PA, Zimmerman WJ, Lumpkin TA (1993) Microbiological management of wetland rice fields. In: Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, pp 417–455

    Google Scholar 

  • Rooney VJN, Girwat MW, Savin MC (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb Ecol 49:163–175

    Article  Google Scholar 

  • Roshchyna NO (2018) Modern condition and analysis of anthropogenous-climatic transformation of vegetation of lakes of the northern Steppe land. Ecol Noospherol 29(2):142–148

    Google Scholar 

  • Rossier O (1995) Spatial and temporal separation of littoral zone fishes of Lake Geneva (Switzerland–France). Hydrobiologia 300(301):321–327

    Article  Google Scholar 

  • Rudgers JA, Afkhami ME, Bell-Dereske L, Chung YA, Crawford KM, Kivlin SN et al (2020) Climate disruption of plant-microbe. Annu Rev Ecol Evol Syst 51:561–586. https://doi.org/10.1146/annurev-ecolsys-011720-090819

    Article  Google Scholar 

  • Sadowsky MJ, Whitman RL (2011) Conclusions and future use of fecal indicator bacteria for monitoring water quality and protecting human health

    Google Scholar 

  • Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A (2017) Shared and host specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19:1407–1424

    Article  PubMed  Google Scholar 

  • Samarakoon K, Jeon Y-J (2012) Bio-functionalities of proteins derived from marine algaeda review. Food Res Int 48(2):948–960

    Article  Google Scholar 

  • Sanchez-Galvan G, Monroy O, Gomez J, Olguin EJ (2008) Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut 194:77–90

    Article  Google Scholar 

  • Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol 23:137–154

    Article  Google Scholar 

  • Santamaría-Hernando S, Rodríguez-Herva JJ, Martínez-García PM, Río-Álvarez I, González-Melendi P, Zamorano J, Tapia C, Rodríguez-Palenzuela P, López-Solanilla E (2018) Pseudomonas syringae pv. Tomato exploits light signals to optimize virulence and colonization of leaves. Environ Microbiol 20:4261–4280

    Article  PubMed  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8:e00764

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholz VV, Martin BC, Meyer R et al (2021) Cable bacteria at oxygen-releasing roots of aquatic plants: a widespread and diverse plant-microbe association. New Phytol 232(5):2138–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Sculthorpe CD (1967a) The biology of aquatic vascular plants. Edward Arnold, London, 610p

    Google Scholar 

  • Sculthorpe CD (1967b) The biology of aquatic vascular plants. St. Martin’s Press, New York, 610p

    Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20(2):113–136

    Article  Google Scholar 

  • Shahid MJ, Ali S, Shabir G et al (2020) Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water. Chemosphere 243:125353

    Article  PubMed  Google Scholar 

  • Singh SK, Singh SK, Kannaujiya VK, Rahman MA, Dixit K, Kapur AS, Sundaram S (2018) Algal based CO2 sequestration: a sustainable route for CO2 mitigation. In: Tripathi K, Rathor NK, Abraham G (eds) The role of photeosynthetic microbes in agriculture and industry. Nova Science, Hauppauge, pp 209–118

    Google Scholar 

  • Singh PP, Kujur A, Yadav A, Kumar A, Singh SK, Prakash B (2019) Mechanisms of plant-microbe interactions and its significance for sustainable agriculture. In: PGPR amelioration in sustainable agriculture. Woodhead Publishing, Sawston, pp 17–39

    Chapter  Google Scholar 

  • Sriprapat W, Thiravetyan P (2016) Efficacy of ornamental plants for benzene removal from contaminated air and water: effect of plant associated bacteria. Int Biodeter Biodegr 113:262–268

    Article  Google Scholar 

  • Stout L, Nüsslein K (2010) Biotechnological potential of aquatic plant-microbe interactions. Curr Opin Biotechnol 21(3):339–345

    Article  PubMed  Google Scholar 

  • Stout LM (2006) “Influence of plant-associated microbial communities on heavy metal uptake by the aquatic plant Lemna minor” Doctoral Dissertations Available from Proquest. AAI3242356. https://scholarworks.umass.edu/dissertations/AAI3242356

  • Sulu-Gambari F, Seitaj D, Meysman FJ, Schauer R, Polerecky L, Slomp CP (2016) Cable bacteria control iron–phosphorus dynamics in sediments of a coastal hypoxic basin. Environ Sci Technol 50:1227–1233

    Article  PubMed  Google Scholar 

  • Suyamud B, Thiravetyan P, Panyapinyopol B, Inthorn D (2018) Dracaena sanderiana endophytic bacteria interactions: effect of endophyte inoculation on bisphenol a removal. Ecotoxicol Environ Saf 157:318–326

    Article  PubMed  Google Scholar 

  • Tanaka Y, Matsuzawa H, Tamaki H, Tagawa M, Toyama T, Kamagata Y, Mori K (2017) Isolation of novel bacteria including rarely cultivated phyla, Acidobacteria and Verrucomicrobia, from the roots of emergent plants by simple culturing method. Microbes Environ 32:288–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomaz SM, da Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol Bras 22(2):218–236

    Article  Google Scholar 

  • Thomaz SM, Bini LM, Pagioro TA, Murphy KJ, dos Santos AM, Souza DC (2004) The Upper Paraná River and its floodplain. In: Thomaz SM, Agostinho AA, Hahn NS (eds) The Upper Paraná River and its floodplain: physical aspects, ecology and conservation. Backhuys, Leiden, pp 331–352

    Google Scholar 

  • Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM et al (1993) Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar beet (Beta vulgaris). Plant and Soil 150:177–191

    Article  Google Scholar 

  • Timm CM, Carter KR, Carrell AA, Jun S-R, Jawdy SS, Vélez JM et al (2018) Abiotic stresses shift belowground populus-associated bacteria toward a core stress microbiome. mSystems 3:e00070–e00017

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi K, Sharma NK, Rai V, Rai AK (2013) Low cellular P-quota and poor metabolic adaptations of the freshwater cyanobacterium Anabaena fertilissima Rao during Pi-limitation. Antonie Van Leeuwenhoek 103(2):277–291

    Article  PubMed  Google Scholar 

  • Uysal Y, Taner F (2009) Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. Int J Phytoremediation 11:591–608

    Article  PubMed  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  Google Scholar 

  • Van der Lelie D, Corbisier P, Diels L, Gills A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (2000) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 265–281

    Google Scholar 

  • Van Veen H, Sasidharan R (2021) Shape shifting by amphibious plants in dynamic hydrological niches. New Phytol 229:79

    Article  PubMed  Google Scholar 

  • Velásquez AC, Castroverde CDM, He SY (2018) Plant-pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A et al (2016) Diversity and functional traits of culturable microbiome members, including cyanobactera in the rice phyllosphere. Plant Biol 18:627–637

    Article  PubMed  Google Scholar 

  • Verpoorter C, Kutser T, Seekell DA et al (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41(18):6396–6402

    Article  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910

    Article  PubMed  Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 3(10):15

    Google Scholar 

  • Wallace J, Kremling KA, Kovar LL, Buckler ES (2018) Quantitative genetics of the maize leaf microbiome. Phytobiomes J 2:208–224

    Article  Google Scholar 

  • Wang C, Cai X, Zheng Z (2005) High humidity represses Cf-4/Avr4- and Cf-9/Avr9-dependent hypersensitive cell death and defense gene expression. Planta 222:947–956

    Article  PubMed  Google Scholar 

  • Wang W, Barnaby JY, Tada Y, Li H, Tör M, Caldelari D, Lee DU, Fu X-D, Dong X (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Wanjugi P, Harwood VJ (2012) The influence of predation and competition on the survival of commensal and pathogenic fecal bacteria in aquatic habitats. Environ Microbiol 15(2):517–526

    Article  PubMed  Google Scholar 

  • Wan-Lei X, Wei P, Qi L et al (2018) Aquatic plant debris changes sediment enzymatic activity and microbial community structure. Environ Sci Pollut Res Int 22:21801–21810

    Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764

    Article  PubMed  Google Scholar 

  • Weiher E, Clarke GDP, Keddy PA (1998) Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81:309–322

    Article  Google Scholar 

  • Wijesinghe W, Jeon Y-J (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83(1):6–12

    Article  PubMed  Google Scholar 

  • Wright CA, Beattie GA (2004) Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:3269–3274

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Gu L, Hua Z et al (2021) Effects of Escherichia coli pollution on decomposition of aquatic plants: variation due to microbial community composition and the release and cycling of nutrients. J Hazard Mater 401:123252

    Article  PubMed  Google Scholar 

  • Xiao L, Chunyu L, Thompson ML et al (2016) E. coli surface properties differ between stream water and sediment environments. Front Microbiol 7:1732

    Google Scholar 

  • Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK et al (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci 115:E4284–E4293. https://doi.org/10.1073/pnas.1717308115

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav RK, Tripathi K, Ramteke PW, Varghese E, Abraham G (2016) Salinity induced physiological and biochemical changes in the freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana. Plant Physiol Biochem 106:39–45

    Article  PubMed  Google Scholar 

  • Yadav RK, Tripathi K, Mishra V, Ramteke PW, Singh PK, Abraham G (2019) Proteomic evaluation of the freshly isolated cyanobionts from Azolla microphylla exposed to salinity stress. Symbiosis 77(3):249–256

    Article  Google Scholar 

  • Yadav RK, Chatrath A, Tripathi K, Gerard M, Ahmad A, Mishra V, Abraham G (2021) Salinity tolerance mechanism in the aquatic nitrogen fixing pteridophyte Azolla: a review. Symbiosis 83(2):129–142

    Article  Google Scholar 

  • Yadav RK, Ramteke PW, Tripathi K, Varghese E, Abraham G (2022) Salinity induced alterations in the growth and cellular ion content of Azolla caroliniana and Azolla microphylla. J Plant Growth Regul 42:867

    Article  Google Scholar 

  • Yang JW, Wu W, Chung CC et al (2018) Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning interplay between nanoflagellates and bacterioplankton. ISME J 12(6):1532–1542

    Article  PubMed  PubMed Central  Google Scholar 

  • Ybarra GR, Webb R (1999) Effects of divalent metal cations and resistance mechanisms of the cyanobacterium Synechococcus sp. strain PCC 7942. J Hazard Subst Res 2:1–9

    Google Scholar 

  • Ying-ru Z, Yu-fang L, Hai-lin Z, Wei-ming S (2013) Aerobic denitrifying characteristics of duckweed rhizosphere bacterium RWX31. Afr J Microbiol Res 7(3):211–219

    Google Scholar 

  • Yoneda Y, Yamamoto K, Makino A, Tanaka Y, Meng X-Y, Hashimoto J, Shin-ya K, Satoh N, Fujie M, Toyama T (2021) Novel plant-associated Acidobacteria promotes growth of common floating aquatic plants, Duckweeds. Microorganisms 9:1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon S (2010) Towards practical application of methanotrophic metabolism in chlorinated hydrocarbon degradation, greenhouse gas removal, and immobilization of heavy metals. Doctoral dissertation, University of Michigan

    Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    Article  Google Scholar 

  • Zeng J, Bian Y, Xing P, Wu QL (2012) Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Appl Environ Microbiol 78(1):177–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang S, Lv X et al (2018) Dissolved organic matter release in overlying water and bacterial community shifts in biofilm during the decomposition of, Myriophyllum verticillatum. Sci Total Environ 633:929–937

    Article  PubMed  Google Scholar 

  • Zhang M, Molinos JG, Su G, Zhang H, Xu J (2019) Spatially structured environmental variation plays a prominent role on the biodiversity of freshwater macrophytes across China. Front Plant Sci 10:161. https://doi.org/10.3389/fpls.2019.00161. PMID: 30853965

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Li S, Hu Z, Liu G (2018) Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene. BMC Plant Biol 18:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo Z (2019) Why algae release volatile organic compounds – the emission and roles. Front Microbiol 10:491

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M., Chaudhary, P., Bhutani, S., Bhasin, S., Mehra, A., Tripathi, K. (2023). Overview of Microbial Associations and Their Role Under Aquatic Ecosystems. In: Soni, R., Suyal, D.C., Morales-Oyervides, L., Sungh Chauhan, J. (eds) Current Status of Fresh Water Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-99-5018-8_4

Download citation

Publish with us

Policies and ethics