Skip to main content
Log in

Assessment of the Hyperaccumulating Lead Capacity of Salvinia minima Using Bioadsorption and Intracellular Accumulation Factors

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Salvinia minima has been reported as a cadmium and lead hyperaccumulator being the adsorption and intracellular accumulation the main uptake mechanisms. However, its physicochemical properties, the effect of metal concentration and the presence of organic and inorganic compounds on its hyperaccumulating capacity are still unknown. Furthermore, the specific adsorption and accumulation mechanisms occurring in the plant are not clear yet. Thus, based on a compartmentalization analysis, a bioadsorption (BAF) and an intracellular accumulation factor (IAF) were calculated in order to differentiate and quantify these two mechanisms. The use of kinetic models allowed predicting the specific type of uptake mechanisms involved. Healthy plants were exposed to five lead concentrations ranging from 0.80 ± 0.0 to 28.40 ± 0.22 mg Pb2+l−1 in batch systems. A synthetic wastewater, amended with propionic acid and magnesium sulfate, and deionized water were used as media. The BAF and IAF contributed to gain an in-depth insight into the hyperaccumulating lead capacity of S. minima. It is clear that such capacity is mainly due to adsorption (BAF 780–1980) most likely due to its exceptional physico-chemical characteristics such as a very high surface area (264 m2 g−1) and a high content of carboxylic groups (0.95 mmol H+g−1 dw). Chemisorption was predicted as the responsible mechanism according to the pseudo-second order adsorption model. Surprisingly, the ability of S. minima to accumulate the metal into the cells (IAF 57–1007) was not inhibited at concentrations as high as 28.40±0.22 mg Pb2+l−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

dw:

Dry weight

TKN:

Total Kjeldahl Nitrogen

SWW:

Synthetic Wastewater

DW:

Deionized Water

IC:

Initial Lead Concentration

BCF:

Bioconcentration Factor

BAF:

Bioadsorption Factor

IAF:

Intracellular Accumulation Factor

FOKs :

Pseudo-first order rate equation

SOKs :

Pseudo-second order rate equation

q t :

Sorption capacity (mg g−1) at time t (h)

q e :

Sorption capacity (mg g−1) at equilibrium

k 1 :

Rate constant of pseudo-first order sorption (l h−1)

k 2 :

Rate constant of pseudo-second order sorption (g mg−1 h−1)

t :

Contact time (h)

h :

Initial sorption rate (mg g−1 h−1)

q :

Metal uptake capacity (mg g−1)

q max :

Maximum adsorption capacity (mg g−1)

b :

Langmuir constant related to energy of adsorption (l mg−1)

C e :

Concentration of the metal in liquid phase at equilibrium (mg l−1).

K :

Freundlich constant related to sorption capacity [(mg g−1)(l mg−1)1/n]

n :

Freundlich constant related to sorption intensity

V :

Intracellular accumulation rate at time t (mg Pb2+ g biomass h−1)

V max :

Maximal intracellular accumulation rate (mg Pb2+ g biomass h−1)

K m :

Lead concentration at which a half of the maximal intracellular accumulation rate is attained (mg)

References

  • Abedin, M. J., Feldmann, J., & Meharg, A. (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128, 1120–1128.

    Article  CAS  Google Scholar 

  • Ahlgren, G., & Merino, L. (1991). Lipid analysis of fresh-water microalgae: a method study. Archaea Hydrobiologica, 121, 295–306.

    CAS  Google Scholar 

  • Aksu, A. (2001). Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling. Biochemical Engineering Journal, 7, 79–84.

    Article  CAS  Google Scholar 

  • AOAC (1990). Official Methods of Analysis. Washington: Association of Official Analytical Chemists.

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Chen, J. P., & Wu, S. (2004). Simultaneous adsorption of copper ions and humic acid onto an activated carbon. Journal of Colloid Interface and Science, 280, 334–342.

    Article  CAS  Google Scholar 

  • Christie, W. W. (1993). Preparation of lipid extracts from tissues. In W. W. Christie (Ed.), Advances in Lipid Methodology – Two (pp. 195–213). Dundee: Oily Press.

    Google Scholar 

  • Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330.

    Article  CAS  Google Scholar 

  • Degryse, F., Smolders, E., & Merckx, R. (2006). Labile Cd complexes increase Cd availability to plants. Environmental Science & Technology, 40, 830–836.

    Article  CAS  Google Scholar 

  • Flores-Céspedes, F., González-Pradas, E., Fernández-Pérez, M., Villafranca-Sánchez, M., Socías-Viciana, M., & Ureña-Amate, M. D. (2002). Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. Journal of Environmental Quality, 31, 880–888.

    Google Scholar 

  • Furman, N. H. (1975). Standard Methods of Chemical Analysis. New York: Krieger Publishing Company.

    Google Scholar 

  • Hernández, E., & Olguín, E. J. (2002). Biosorption of heavy metals influenced by the chemical composition of Spirulina sp. (Arthrospira) biomass. Environmental Technology, 23, 1369–1377.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Holm-Hansen, O., & Riemann, B. (1978). Chlorophyll a determination: improvements in methodology. Oikos, 30, 438–447.

    Article  CAS  Google Scholar 

  • Kaewprasit, C., Hequet, E., Abidi, N., & Gourlot, J. P. (1998). Application of methylene blue adsorption to cotton fiber surface area measurement. Journal of Cotton Science, 2, 164–173.

    Google Scholar 

  • Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., & Forster, C. F. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92, 197–200.

    Article  CAS  Google Scholar 

  • Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116, 368–372.

    Article  CAS  Google Scholar 

  • Lazaridis, N. K., & Asouhidou, D. D. (2003). Kinetics of sorption removal of chromium (VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite. Water Research, 37, 2875–2882.

    Article  CAS  Google Scholar 

  • Madeira, P. T., Jacono, C. C., Tipping, P., Van, T. K., & Center, T. D. (2003). A genetic survey of Salvinia minima in the southern United States. Aquatic Botany, 76, 127–139.

    Article  CAS  Google Scholar 

  • Mallick, N. (2003). Biotechnological potential of Chlorella vulgaris for accumulation of Cu and Ni from single and binary metal solutions. World Journal of Microbiology & Biotechnology, 19, 695–701.

    Article  CAS  Google Scholar 

  • Miretzky, P., Saralegui, A., & Cirelli, A. F. (2006). Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere, 62, 247–254.

    Article  CAS  Google Scholar 

  • Mishra, fS., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., & Gupta, D. K. (2006). Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65, 1027–1039.

    Article  CAS  Google Scholar 

  • Noraho, N., & Gaur, J. P. (1996). Cadmium adsorption and intracellular uptake by two macrophytes, Azolla pinnata and Spirodela polyrhiza. Archaea Hydrobiologica, 136, 135–144.

    CAS  Google Scholar 

  • Olguín, E. J., Hernández, E., & Ramos, I. (2002). The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnologica, 22, 121–131.

    Article  Google Scholar 

  • Olguín, E. J., Rodríguez, D., Sánchez, G., Hernández, E., & Ramírez, M. E. (2003). Productivity, protein content and nutrient removal from anaerobic effluents of coffee wastewater in Salvinia minima ponds, under sub-tropical conditions. Acta Biotechnologica, 23, 259–270.

    Article  Google Scholar 

  • Olguín, E. J., Sánchez-Galván, G., & Pérez-Pérez, T. (2007). Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high–strength organic wastewater. Water Air and Soil Pollution, 181, 135–147.

    Article  CAS  Google Scholar 

  • Olguín, E. J., Sánchez-Galván, G., Pérez-Pérez, T., & Pérez-Orozco, A. (2005). Surface adsorption, intracellular accumulation and compartmentalization of lead in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. Journal of Industrial Microbiology & Biotechnology, 32, 577–586.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water Air and Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Paganetto, A., Carpaneto, A., & Gambale, F. (2001). Ion transport and metal sensitivity of vacuolar channels from the roots of the aquatic plant Eichhornia crassipes. Plant Cell & Environment, 24, 1329–1336.

    Article  CAS  Google Scholar 

  • Peer, W. A., Baxter, I. R., Richards, E. L., Freeman, J. L., & Murphy, A. S. (2006). Phytoremediation and hyperaccumulator plants. Topics in Current Genetics, 14, 299–340.

    Article  CAS  Google Scholar 

  • Prado, A. G. S., Souza, S. M., Lopes da Silva, W. T., & Rezende, M. O. (1999). Development of a filtration and titration method for the determination of the acidity of humic acids. Quimica Nova, 22, 894–896.

    CAS  Google Scholar 

  • Rascon, A. E., Tiemann, K. J., Dokken, K., Gamez, G., Parsons, J. G., Chianelli, R., et al. (2000). Study of the binding mechanism of heavy metals by inactivated tissues of Solanum elaeagnifolium. In: Proceedings of the 2000 Conference on Hazardous Waste Research (pp. 361–369). Denver.

  • Sahi, S., Bryant, N., Sharma, N., & Singh, S. R. (2002). Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environmental Science & Technology, 36, 4676–4680.

    Article  Google Scholar 

  • Schneider, I. A. H., & Rubio, J. (1999). Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environmental Science & Technology, 33, 2213–2217.

    Article  CAS  Google Scholar 

  • Slaveykova, V., & Wilkinson, K. J. (2002). Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. Environmental Science & Technology, 36, 969–975.

    Article  CAS  Google Scholar 

  • Sundberg-Jones, S. E., & Hassan, S. M. (2007). Macrophyte sorption and bioconcentration of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Water Air and Soil Pollution, 183, 187–200.

    Article  CAS  Google Scholar 

  • Sunkar, R., Kaplan, B., Bouché, N., Arazi, T., Dolev, D., Talke, I. N., et al. (2000). Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGGC1 gene confer Pb2+ tolerance. The Plant Journal, 24, 533–542.

    Article  CAS  Google Scholar 

  • Tamura, H., Honda, M., Sato, T., & Kamachi, H. (2005). Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). Journal of Plant Research, 118, 355–359.

    Article  Google Scholar 

  • Tien, C. J. (2002). Biosorption characteristics of metal ions by freshwater algae with different surface characteristics. Process Biochemistry, 38, 605–613.

    Article  CAS  Google Scholar 

  • Vermaat, J. E., & Hanif, M. K. (1998). Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Research, 32, 2569–2576.

    Article  CAS  Google Scholar 

  • Volesky, B. (2003). Sorption and Biosorption. Montreal: BV Sorbex Inc.

    Google Scholar 

  • Wang, H., Shan, W., Lui, T., Xie, Y., Wen, B., Zhang, S., et al. (2007). Organic acids enhance the uptake of lead by wheat roots. Planta, 225, 1483–1494.

    Article  CAS  Google Scholar 

  • Wang, T. C., Weissman, J. C., Ramesh, G., Varadarajan, R., & Benemann, J. R. (1996). Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 57, 779–786.

    Article  CAS  Google Scholar 

  • Zayed, A., Suvarnalatha, G., & Terry, N. (1998). Phytoaccumu1ation of trace e1ements by wetlands p1ants: l. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

  • Zhan, X. M., & Zhao, Z. (2003). Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin. Water Research, 37, 3905–3912.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Council of Science and Technology (CONACYT) through grant P-46697-Z. Ricardo E. González-Portela and Arith Pérez-Orozco are thanked for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia J. Olguín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Galván, G., Monroy, O., Gómez, J. et al. Assessment of the Hyperaccumulating Lead Capacity of Salvinia minima Using Bioadsorption and Intracellular Accumulation Factors. Water Air Soil Pollut 194, 77–90 (2008). https://doi.org/10.1007/s11270-008-9700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9700-5

Keywords

Navigation