Skip to main content

Root–Knot Nematodes in Vegetables and Ornamentals and Their Management by Novel Biological and Biotechnological Tools

  • Chapter
  • First Online:
Novel Biological and Biotechnological Applications in Plant Nematode Management

Abstract

Root–knot nematode is a significant pest of crops all over the world. It seriously harms vegetables and ornamentals. The vegetables with the worst infestations include tomatoes, eggplants, potatoes, pepper, okra, lettuce, cucumber, bottle gourd, etc., and may exhibit up to 60% crop losses. The nematode is a sedentary endoparasite, and forms galls on the root system. As a result, there is a significant disruption in the absorption of water and nutrients by the roots and subsequently to the entire plant body. The nematode may be managed through a variety of strategies, including cultivation of resistant crops/cultivars, use of nematicides, cultural practices, physical methods, etc. However, none of these methods are completely successful against Meloidogyne spp. Keeping in view the commercial value of the crops, and economic importance of this nematode, the present chapter elaborates updated information on application of novel biological and biotechnological tools for managing root–knot in ornamental and vegetable crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abad P, Favery B, Rosso MN, Castagnone-Sereno P (2003) Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4(4):217–224

    Article  CAS  Google Scholar 

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915

    Article  CAS  PubMed  Google Scholar 

  • Abd-Elgawad MM (2022) Understanding molecular plant–nematode interactions to develop alternative approaches for nematode control. Plan Theory 11(16):2141

    CAS  Google Scholar 

  • Akitt DB (1978) Meloidogyne incognita (nematode) parasitism of Lycopersicon esculentum (tomato) plants: ethylene action in susceptible and resistant host responses. M. Sc. Thesis, Biological Sciences

    Google Scholar 

  • Ambo PBN, Ethiopia EA, Serfoji P, Rajeshkumar S, Selvaraj T (2010) Management of root-knot nematode, Meloidogyne incognita on tomato cv Pusa ruby. By using vermicompost, AM fungus, Glomus aggregatum and mycorrhiza helper bacterium, Bacillus coagulans. J Agric Sci Technol 6:37–45

    Google Scholar 

  • Askary TH (2015) Nematophagous fungi as biocontrol agents of phytonematodes. In: Biocontrol agents of phytonematodes. CABI, Wallingford, pp 81–125

    Chapter  Google Scholar 

  • Atkins SD, Hidalgo-Diaz L, Clark IM, Morton CO, De Oca NM, Gray PA, Kerry BR (2003) Approaches for monitoring the release of Pochonia chlamydosporia var. catenulata, a biocontrol agent of root-knot nematodes. Mycoll Res 107:206–212

    Article  Google Scholar 

  • Azlay L, El Boukhari MEM, Mayad EH, Barakate M (2022) Biological management of root-knot nematodes (Meloidogyne spp.): a review. Org Agric 1:1–19

    Google Scholar 

  • Bagyaraj DJ, Manjunath A, Reddy DDR (1979) Interaction of vesicular arbuscular mycorrhiza with root knot nematodes in tomato. Plant Soil 51:397–403

    Article  Google Scholar 

  • Bakhetia M, Charlton WL, Atkinson HJ, McPherson MJ (2005) RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol Plant-Microbe Interact 18:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Becker JO, Zavaleta-Mejia E, Colbert SF, Schroth MN, Weinhold AR, Hancock JG, Van Gundy SD (1988) Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathol 78:1466

    Article  Google Scholar 

  • Benjamin G, Pandharikar G, Frendo P (2022) Salicylic acid in plant symbioses: beyond plant pathogen interactions. Biology 11(6):861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkeley MJ (1885) Vibrio forming cyst on the roots of cucumber, Gdnr’s Chron 220

    Google Scholar 

  • Bhati SSB, Baheti BL (2021) Estimation of avoidable losses caused by Meloidogyne incognita infecting cucumber in poly-house. J Agric App Biol 2(1):35–40

    Article  Google Scholar 

  • Bilgrami AL, Khan A (2022) Plant nematode biopesticides. Academic Press, London

    Book  Google Scholar 

  • Bird R (1885) Remarks on the nature of nerve motion or force. Ind Med Gaz 20(8):241

    PubMed  Google Scholar 

  • Bird AF, Brisbane PG, McClure SG, Kimber RWL (1990) Studies on the properties of the spores of some populations of Pasteuria penetrans. J Invertebr Pathol 55(2):169–178

    Article  CAS  Google Scholar 

  • Brannen R (1995) Production of antibiotics by Bacillus subtilis and their effect on fungal colonists of various crops. Trans Br Mycol Soc 65:203

    Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Buenna AP, Garcia-Alvarez A, Diez-Rojo MA, Ros C, Fernandez P, Lacasa A et al (2007) Use of pepper crop residues for the control of root knot nematodes. Bioresour Technol 98:2846–2851

    Article  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, Ōmura S (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15(3):361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caudal Y, Morin JM (1983) [Experiment in control of nematodes on tomato with a nematode-eating fungi. 1982 trial report ["royal 350"(Arthrobotrys irregularis); Meloidogyne, biological control]

    Google Scholar 

  • Chahal PPK, Chahal VPS (1993) Effect of thuricide on the hatching of eggs root-knot nematode, Meloidogyne incognita. Curr Nematol 4(2):247

    Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896

    Article  CAS  PubMed  Google Scholar 

  • Crow P, Mitkowski NA (2010) Evaluation of Lactuca germplasm for resistance to the northern root-knot nematode. Int J Veg Sci 17:26–36

    Article  Google Scholar 

  • Crump DH (1987) Effect of time sampling, method of isolation and age of nematode on the species of fungi isolated from females of Heterodera schachtii and H. avenae. Rev Nématol 10(3):369–373

    Google Scholar 

  • Curtis RHC, Robinson AF, Perry RN (2009) Hatch and host location. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI, Wallingford, pp 139–162

    Chapter  Google Scholar 

  • Dallemole-Giaretta R, Freitas LG, Lopes EA, Pereira OL, Zooca RJ, Ferraz S (2012) Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Prot 42:102–107

    Article  Google Scholar 

  • Davies KG, Kerry BR, Flynn CA (1988) Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Ann Appl Biol 112(3):491–501

    Article  Google Scholar 

  • de Moura JB, Souza RF, Júnior WGV, Lucas LS, Santos JM, Silva SD, Marín C (2022) Effects of a megafire on the arbuscular mycorrhizal fungal community and parameters in the Brazilian Cerrado ecosystem. For Syst 31(1):1

    Google Scholar 

  • De PE, Dorantes-Acosta A, Zhai J, Accerbi M, Jeong DH, Park S, Meyers BC, Jorgensen RA, Green PJ (2009) Distinct extremely abundant siRNAs associated with co suppression in petunia. RNA 15:1965–1970

    Article  Google Scholar 

  • Desaeger J, Khan MR, Seid A, Silva E et al (2023) Nematode problems in tomato, okra, and other common vegetables and their sustainable management. In: Khan R, Quintanilla (eds) Nematode diseases of crops and their sustainable management. Elsevier Publishers, London

    Google Scholar 

  • Dowsett JA, Reid J, Hopkin A (1982) On Cephalosporium balanoides Drechsler. Mycologia 74(4):687–690

    Article  Google Scholar 

  • Duncan LW, Noling JW (1998) Agricultural sustainability and nematode integrated pest management. Plant and nematode interactions 36:251–287

    Google Scholar 

  • Dunn MT, Sayre RM, Carrell A, Wergin WP (1982) Colonization of nematode eggs by Paecilomyces lilacinus (Thom) Samson as observed with scanning electron microscope [plant pathogenic nematode Meloidogyne incognita, biological control]. Scanning electron microscope (USA)

    Google Scholar 

  • Eapen SJ, Venugopal MN (1995) Field evaluation of Paecilomyces lilacinus and Trichoderma spp. in cardamom nurseries for the control of root-knot nematodes and rhizome rot disease. In: National symposium on nematode problems of India—an appraisal of the nematode management with eco-friendly approaches and biocomponents. Indian Agriculture Research Institute, New Delhi

    Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar C, Barcala M, Portillo M, Almoguera C, Jordano J, Fenoll C (2003) Induction of the Hahsp17.7G4 promoter by root-knot nematodes: involvement of heatshock elements in promoter activity in giant cells. Mol Plant-Microbe Interac 16:1062–1068

    Article  CAS  Google Scholar 

  • Fanelli E, Di VM, Jones JT, Giorgi C (2005) Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene 349:87–95

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  • Francl LJ, Wheeler TA (1993) Interaction of plant-parasitic nematodes with wilt-inducing fungi. Nematode Interactions 1:79–103

    Article  Google Scholar 

  • Freitas LG, Ferraz S, Muchovej JJ (1996) Effectiveness of different isolates of Paecilomyces lilacinus and an isolate of Cylindrocarpon destructans on the control of Meloidogyne javanica. Nematropica 25:109–115

    Google Scholar 

  • Gray NF (1988) Fungi attacking vermiform nematodes. Diseases of nematodes II:3–38

    Google Scholar 

  • Guima AY, Hackett AM, Cooke RC (1973) Thermostable nematoxins produced by germinating conidia of some endozoic fungi. Trans Br Mycol Soc 60:49–56

    Article  Google Scholar 

  • Guo S, Kemphues K (1995) Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Gen 2:110–119

    Article  CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Hastuti LDS, Berliani K, Mulya MB, Hartanto A, Pahlevi S (2022) Arthrobotrys sinensis (Orbiliaceae orbiliales), a new record of nematode-trapping fungal species for Sumatra, Indonesia. In: UNISET 2021: Proceedings of the 2nd Universitas Kuningan International Conference on System, Engineering, and Technology, UNISET 2021, 2 December 2021, Kuningan, West Java, Indonesia, pp 386. European Alliance for Innovation, 2022

    Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 5:605–614

    Article  CAS  PubMed  Google Scholar 

  • Huang CS (1985) Formation, anatomy and physiology of giant cells induced by root-knot nematodes. Paper presented at the "International Meloidogyne Project Conference," April 1983, Raleigh, NC. Literature review

    Google Scholar 

  • Huang G, Allen R, Davis EL, Baum JT, Hussey SR (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14302–14306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquet M, Bongiovanni M, Martínez M, Verschave P, Wajnberg E, Castagnone-Sereno P (2005) Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the mi gene. Plant Pathol 54(2):93–99. https://doi.org/10.1111/j.1365-3059.2005.01143.x

    Article  Google Scholar 

  • Jain RK, Sethi C (1988) Influence of endomycorrhizal fungi Glomus fasciculatum and G. eplgaeus on penetration and development of Heterodera cajanion cowpea. Indian J Nematol 18(1):89–93

    Google Scholar 

  • Jalali BL, Jalali I (1991) Mycorrhiza in plant disease control. Di dalam: hand book of applied mycology Vol I: soil and plant, New York, Basel, Hongkong

    Google Scholar 

  • Jansson HB (1982) Attraction of nematodes to endoparasitic nematophagous fungi. Trans Br Mycol Soc 79(1):25–29

    Article  Google Scholar 

  • Jatala P (1985) Biological control of nematodes. An advanced treatise on meloidogyne. Biol Control 1:303–308

    Google Scholar 

  • Jatala P (1986) Biological control of plant-parasitic nematodes. Annu Rev Phytopathol 24(1):453–489

    Article  Google Scholar 

  • Jatala P, Franco J, Vilca A, Cornejo W (1979) Nonsolanaceous hosts of globodera in the andes. J Nematol 11:210–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Xiang M, Liu X (2017) Nematode-trapping fungi. Microbiol Spectr 5(1):5–1

    Article  Google Scholar 

  • Johnston T (1957) Further studies on microbiological reduction of nematode populations in water saturated soils. Phytopathol 47:525–526

    Google Scholar 

  • Jones MGK (1981) Host cell responses to endoparasitic nematodes. Ann Appl Biol 97:353–372

    Article  CAS  Google Scholar 

  • Kantor M, Handoo Z, Kantor C, Carta L (2022) Top ten most important US-regulated and emerging plant-parasitic nematodes. Hortic 8(3):208

    Article  Google Scholar 

  • Karajeh MR (2015) Checklist of host range of root-knot nematodes (Meloidogyne species and races) in Jordan. Jordan J Agric Sci 11(3):761–769

    Article  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    Article  CAS  PubMed  Google Scholar 

  • Kellam MK, Schenck NC (1980) Interaction between a vesicular-arbuscular mycorrhizal fungus and root-knot nematode on soybean. Phytopathol 70(4):293–296

    Article  Google Scholar 

  • Kerry B (1997) Biological control of nematodes: prospects and opportunities. Plant nematode problems and their control in the near east region, pp 79–92

    Google Scholar 

  • Keuken O, Sikora RA (1995) Use of in-vitro bioassays to evaluate nematicidal properties of a plant-growth promoting Bacillus subtilis strain on Meloidogyne incognita juveniles. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit, Gent

    Google Scholar 

  • Khan MR (1993) Interaction of coal-smoke pollution and root-knot nematode on eggplant. National Symposium on Nematology, Hissar, p 82

    Google Scholar 

  • Khan MW (1997) The four major species of root-knot nematode—current status and management approach. Indian Phytopathol 50:445–457

    Google Scholar 

  • Khan MR (2007) Prospects of microbial control of root-knot nematodes infecting vegetable crops. In: Sharma N, Singh HB (eds) Biotechnology: plant health management. International Book Distributing Co, Lucknow, pp 643–665

    Google Scholar 

  • Khan MR (2008) Plant nematodes- methodology, morphology, systematics, biology and ecology. Science Publishers, Enfield, NH, p 360. ISBN: 9781578085330 (Authored book)

    Book  Google Scholar 

  • Khan MR (2009) Air pollution damage to plants. UGC sponsored refresher course Academic Staff College, Aligarh Muslim University, Aligarh, p 2009

    Google Scholar 

  • Khan MR (2016) Nematode biocontrol agents: diversity and effectiveness against phytonematodes in sustainable crop protection. Indian Phytopathol 69(4s):453–463

    Google Scholar 

  • Khan MR (2023) Nematode pests of agricultural crops, a global overview. In: Khan MR (ed) Novel biological and biotechnological applications in plant nematode management. Springer Nature, Singapore, pp 1–40. ISBN: 978-981-99-2892-7

    Google Scholar 

  • Khan MR, Akram M (2000) Effects of certain antagonistic fungi and rhizobacteria on wilt disease complex of tomato caused by Meloidogyne incognita and fusarium oxysporum f.sp. lycopersici. Nematol Mediterr 28:139–144

    Google Scholar 

  • Khan MR, Answer A (2011) Fungal bioinoculants for plant disease management. In: Paul M, Clinton M, Ahmad I (eds) Microbes and microbial technology. Springer, New York, NY, pp 447–488

    Chapter  Google Scholar 

  • Khan MR, Ejaz MN (1997) Effect of neem leaves and Paecilomyces lilacinus on root-knot nematode disease of okra. Vasundhara 2:1–5

    Google Scholar 

  • Khan MW, Esfahani MN (1992) Root-knot of vegetables. Plant diseases of international importance, vol. II: Diseases of vegetables and oil seed crops, pp 212–234

    Google Scholar 

  • Khan MR, Kounsar K (2000) Effect of seed treatment with certain bacteria and fungi on the growth of mungbean and reproduction of Meloidogyne incognita [Vigna radiata (L.) Wilczeck-India]. Nematol Mediterr 28:2

    Google Scholar 

  • Khan MR, Mohiddin FA (2018) Trichoderma: its multifarious utility in crop improvement. In: Prasad R, Gill SS, Tuteja N (eds) New and future developments in microbial biotechnology and bioengineering: crop improvement through microbial biotechnology. Elsevier Publications, pp 263–291

    Google Scholar 

  • Khan TA, Saxena SK (1997) Integrated management of root knot nematode Meloidogyne javanica infecting tomato using organic materials and Paecilomyces lilacinus. Bioresour Technol 61(3):247–250

    Article  Google Scholar 

  • Khan MR, Sharma RK (2020) Fusarium-nematode wilt disease complexes, etiology and mechanism of development. Indian Phytopathol 73(4):615–628

    Article  Google Scholar 

  • Khan MR, Tarannum Z (1997) Effect of certain bacteria and fungi on the development of root-knot disease of tomato. Abstracts, Symposium on Herbal and Microbial Pesticides, Varanasi

    Google Scholar 

  • Khan MR, Tarannum Z (1999) Effects of field application of various micro-organisms on Meloidogyne incognita on tomato. Nematol Mediterr:233–238

    Google Scholar 

  • Khan MR, Khan N, Khan SM (2001) Evaluation of agricultural materials as substrate for mass culture of fungal biocontrol agents of fusarial wilt and root-knot nematode diseases. Ann Appl Biol (Suppliment TAC) (U K) 22:50–51

    Google Scholar 

  • Khan MR, Kounsar K, Hamid A (2002) Effect of certain rhizobacteria and antagonistic fungi on root-modulation and root-knot nematode disease of green gram. Nematol Mediterr 1:1

    Google Scholar 

  • Khan MR, Khan SM, Mohiddin FA (2003) Management of root-knot nematode disease of chickpea by the seed treatment with certain bionematicides. In: National symposium on pulses for crop diversification and natural resource management. IIPR, Kanpur, p 205

    Google Scholar 

  • Khan MR, Khan SM, Mohiddin FA (2005) Root knot problem of some winter ornamental plants and its bio-management. J Nematol 37(2):198–206

    PubMed  PubMed Central  Google Scholar 

  • Khan MR, Khan SM, Mohiddin FA (2007) Effect of certain fungal and bacterial phosphate solubilizing microorganisms on root knot nematode disease on mungbean. In: Velazquez E, Rodriguez-Barrueco C (eds) First International meeting on microbial phosphate solubilization. Springer, Netherlands, pp 376–381

    Google Scholar 

  • Khan MR, Altaf S, Mohiddin FA, Khan U, Anwer A (2009) Biological control of plant nematodes with phosphate solubilizing microorganisms. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers, Inc., New York, pp 395–426

    Google Scholar 

  • Khan MR, Reshu, Singh B (2011) Evaluation of some indigenous germplasm of pigeonpea for tolerance against root-knot nematode. Indian J Nematol 41(2):176–179

    Google Scholar 

  • Khan MR, Mohiddin FA, Ejaz MN, Khan M (2012) Management of root-knot disease in eggplant through the application of biocontrol fungi and dry neem leaves. Turk J Biol 36(2):161–169

    Google Scholar 

  • Khan MR, Mohidin FA, Khan U, Ahamad F (2016) Inoculant rhizobia suppressed root-knot disease, and enhanced plant productivity and nutrient uptake of some field-grown food legumes. Acta Agric Scand B Soil Plant Sci 68(2):1–9

    Google Scholar 

  • Khan MR, Mohiddin FA, Haque Z (2017) Phosphate solubilizing microorganisms and their effectiveness against phytonematode. In: Pandey RN, Chakrabourty BN, Singh D, Sharma P (eds) Microbial antagonist: their role in biological control in plant diseases. Today and Tomorrow Publishes, New Delhi, pp 515–553

    Google Scholar 

  • Khan MR, Ansari RA, Rizvi TF, Qasim RM (2018a) Nematode problem in vegetable crops, and its bio-management. Bio-intensive approaches: application and effectiveness in the management of plant nematodes, insects and weeds. Today and Tomorrow Publishers, New Delhi, p 698. (ISBN: 978-8-170-19624-2)

    Google Scholar 

  • Khan MR, Mohiddin FA, Ahamad F (2018b) Inoculant rhizobia suppressed root-knot disease, and enhanced plant productivity and nutrient uptake of some field-grown food legumes. Acta Agric Scand B Soil Plant Sci 68(2):166–174

    CAS  Google Scholar 

  • Khan MR, Haque Z, Ahmad F (2021) Diseases of nationally important field crops. Today & Tomorrow’s Printers and Publishers, New Delhi, p 569. (Edited book)

    Google Scholar 

  • Khan A, Ansari MSA, Irsad TH, Khan AA (2022) Role of beneficial microbes for plant growth improvement. In: Plant protection: from chemicals to biologicals. Walter de Gruyter GmbH, p 141

    Chapter  Google Scholar 

  • Khan MR, Rizvi TF, Ansari MSA (2023) In: Khan R, Quintanilla M (eds) Nematode problems in polyhouse cultivation and their sustainable management in ornamental and vegetable crops, nematode disease of crops and their sustainable management. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Kim S, Kim HM, Seo HJ, Yeon J, Park AR, Yu NH, Jeong SG, Chang JY, Kim JC, Park HW (2022) Root-knot nematode (Meloidogyne incognita) control using a combination of Lactiplantibacillus plantarum WiKim0090 and copper sulfate. J Microbiol Biotechnol 32(8):960–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG (2007) Flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Klink VP, Wolniak SM (2001) Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea. Mol Biol Cell 12:761–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klink VP, Kim KH, Martins V, MacDonald MH, Beard HS, Alkharouf NW, Matthews BF (2009) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta 230:53–71

    Article  CAS  PubMed  Google Scholar 

  • Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF (2010) Microarray detection call methodology as a means to identify and compare transcripts expressed within syncytial cells from soybean (Glycine max) roots undergoing resistant and susceptible reactions to the soybean cyst nematode (Heterodera glycines). J Biomed Biotechnol 2010:1. https://doi.org/10.1155/2010/491217

    Article  CAS  Google Scholar 

  • Kumar A, Kapoor A, Walia RK, Walia KK (2016) Nematoxins of microbial origin: their identification, characterization and development as bio-nematicides I. isolation and screening of bacterial strains for nematoxicity. Indian J Nematol 46(2):107–115

    Google Scholar 

  • Lamberti F (1979) Economic importance of Meloidogyne spp. in subtropical and Mediterranean climates. Root-knot nematodes (Meloidogyne species) systematics, biology and control; GBR, vol 71. Academic Press, London, pp 341–360

    Google Scholar 

  • Lehman PS (1994) Dissemination of phytoparasitic nematodes. Nematol Circ 1:208

    Google Scholar 

  • Li J, Todd TC, Oakley TR, Lee J, Trick HN (2010a) Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe. Planta 232:775–785

    Article  CAS  Google Scholar 

  • Li J, Todd TC, Trick HN (2010b) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113–123

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wang D, Gong J, Zhang Y (2022) Individual and combined application of nematophagous fungi as biological control agents against gastrointestinal nematodes in domestic animals. Pathogens 11(2):172

    Article  PubMed  PubMed Central  Google Scholar 

  • Lilley CJ, Davies LJ, Urwin PE (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139(5):630–640

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in agrobacterium rhizogenes transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    Article  CAS  PubMed  Google Scholar 

  • Lu CJ, Meng Y, Wang YL, Zhang T, Yang GF, Mo MH, Ji KF, Liang LM, Zou CG, Zhang KQ (2022) Survival and infectivity of second-stage root-knot nematode Meloidogyne incognita juveniles depend on lysosome-mediated lipolysis. J Biol Chem 298(3):101637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysek H (1976) Auto dehelminthization of soil in lowland deciduous forests, vol 41. Universitatis Palackianae Olomucensis Facultatis Medicae, pp 73–106

    Google Scholar 

  • Mankau R (1961) The use of nematode-trapping fungi to control root-knot nematodes. Nematologica 6(4):326–332

    Article  Google Scholar 

  • Mankau R (1980) Biological control of nematode pests by natural enemies. Annu Rev Phytopathol 18(1):415–440

    Article  Google Scholar 

  • Manzanilla-Lopez RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J, Hidalgo-Díaz L (2013) Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J Nematol 45:1

    PubMed  PubMed Central  Google Scholar 

  • McCarter JP (2008) Nematology: terra incognita no more. Nat Biotechnol 26:882–884

    Article  CAS  PubMed  Google Scholar 

  • McCarter JP, Mitreva MD, Martin J, Dante M, Wylie T, Rao U, Pape D, Bowers Y, Theising B, Murphy CV, Kloek AP, Chiapelli BJ, Clifton SW, Bird DM, Waterston RH (2003) Analysis and functional classification of transcripts from the nematode Meloidogyne incognita. Genome Biol 4:R26

    Article  PubMed  PubMed Central  Google Scholar 

  • Menezes PS, Yan Y, Yang Y, Mitter N, Mahony TJ, Mody KT (2022) RNAi-based biocontrol of pests to improve the productivity and welfare of livestock production. Appl Biosci 1(3):229–243

    Article  Google Scholar 

  • Merriman PR, Price RD, Kollmorgen JF, Piggott T, Ridge EH (1974) Effect of seed inoculation with Bacillus subtilis and Streptomyces griseus on the growth of cereals and carrots. Aust J Agric Res 25(2):219–226

    Article  Google Scholar 

  • Meyer SLF (1990) Evaluation of potential biocontrol agents for soybean cyst nematode, vol 41. Mycological Society of America Newsletter, p 29

    Google Scholar 

  • Mishra SK, Keller JE, Miller JR, Heisey RM, Nair MG, Putnam AR (1987) Insecticidal and nematicidal properties of microbial metabolites. J Ind Microbiol Biotechnol 2(5):267–276

    Google Scholar 

  • Mlotshwa S, Voinnet O, Mette MF, Matzke M, Vaucheret H, Wei DS, Pruss G, Vance VB (2002) RNA silencing and the mobile silencing signal. Plant Cell 14(Suppl):S289–S301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohiddin FA, Khan MR (2013) Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil borne plant pathogens. Afr J Agric 8(43):5272–5275

    Google Scholar 

  • Mohiddin FA, Khan MR (2014) Root-knot nematode: ignored soil borne plant pathogen causing root diseases of chickpea. Eur J Biotech Biosci 2(1):04–10

    Google Scholar 

  • Mohiddin FA, Khan MR, Khan SM, Bhat BH (2010) Why Trichoderma is considered super hero (super fungus) against the evil parasites? Plant Pathol J 9(3):92–102. https://doi.org/10.3923/ppj.2010.92.102

    Article  Google Scholar 

  • Morgan-Jones G, White JF, Rodriguez-Kabana R (1984) Phytonematode pathology: ultrastructural studies. II Parasitism of Meloidogyne arenaria eggs and larvae by Paecilomyces lilacinus. Nematropica 1:57–71

    Google Scholar 

  • Nakat RV, Acharya A, Jonathan EI, Hazarika K, Jha S, Singh US et al (1995) Evaluation of Paecilomyces lilacinus for the control of root-knot nematodes Meloidogyne incognita on betel vine. In: National symp on nematode problems of India–an appraisal of the nematode management with eco-friendly approaches and biocomponents, vol 44

    Google Scholar 

  • Omura SATOSHI (1986) Philosophy of new drug discovery. Microbiol Rev 50(3):259–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opperman CH, Taylor CG, Conkling MA (1994) Root-knot nematode-directed expression of a plant root-specific gene. Science 263:221–223

    Article  CAS  PubMed  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 39:14802–14807

    Article  Google Scholar 

  • Osman AA, Viglierchio DR (1988) Efficacy of biologically active agents as nontraditional nematicides for Meloidogyne javanica. Rev Nematol 11:93–98

    CAS  Google Scholar 

  • Oyetunde AK, Kolombia YA, Adewuyi O, Afolami SO, Coyne D (2022) First report of Meloidogyne enterolobii infecting cassava (Manihot esculenta) resulting in root galling damage in Africa. Plant Dis 106(5):1533

    Article  CAS  Google Scholar 

  • Park JE, Lee KY, Lee SJ, Oh WS, Jeong PY, Woo T, Kim CB, Paik YK, Koo HS (2008) The efficiency of RNA interference in Bursaphelenchus xylophilus. Mol Cells 26:81–86

    CAS  PubMed  Google Scholar 

  • Ralmi NHAA, Khandaker MM, Mat N (2016) Occurrence and control of root knot nematode in crops: a review. Aust J Crop Sci 10(12):1649–1654

    Article  Google Scholar 

  • Rao MS (2007) Biopesticides for management of nematodes in horticultural crops. Indian J Plant Prot 35(2):212–220

    Google Scholar 

  • Remeeus PM, van Bezooijen J, Wijbrandi J, van Bezooijen J (1998) In vitro testing is a reliable way to screen the temperature sensitivity of resistant tomatoes against Meloidogyne incognita. In: Proceedings of 5th international symposium on crop protection, vol 63. Universiteit Gent, Ghent, pp 635–640

    Google Scholar 

  • Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J (2022) Bioprospecting plant growth promoting rhizobacteria for enhancing the biological properties and phytochemical composition of medicinally important crops. Molecules 27(4):1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roblin C, Rousselot-Pailley P, Duarte V, Perrier J, Lafond M (2023) Antimicrobial Ribosomally synthesized and post-translationally modified peptides as a source of alternatives to antibiotics: a focus on the Sactipeptides and Ranthipeptides subclasses. In: Peptide and protein engineering for biotechnological and therapeutic applications, pp 57–114

    Chapter  Google Scholar 

  • Rodriguez-Kabana R, Morgan-Jones G (1988) Potential for nematode control by mycofloras endemic in the tropics. J Nematol 20(2):191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological control in rice fields: role of hydrogen sulfide. Science 148(3669):524–526

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Kabana R, Morgan-Jones G, Chet I (1987) Biological control of nematodes: soil amendments and microbial antagonists. Plant Soil 100:237–247

    Article  Google Scholar 

  • Saikawa M (1982) An electron microscope study of Meria coniospora, an endozoic nematophagous Hyphomycete. Can J Bot 60(10):2019–2023

    Article  Google Scholar 

  • Santhi A, Sivakumar CV (1995) Biocontrol potential of Pseudomonas fluorescens (Migula) against root-knot nematode, Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 on tomato. J Biol Control 9(2):113–115

    Google Scholar 

  • Sasser JN (1979) Economic importance of Meloidogyne in tropical countries. Root-knot nematodes (Meloidogyne species) systematics, biology and control; GBR. Academic Press; DA, London, pp 359–375

    Google Scholar 

  • Sasser JN (1989) Plant-parasitic nematodes: the farmer's hidden enemy. In: Plant-parasitic nematodes: the farmer's hidden enemy. CABI, Raleigh, NC, p 115, 100

    Google Scholar 

  • Sasser JN, Carter CC (1983) The international meloidogyne project: model for international collaborative research [survey, discoveries of new species, management]. Arab J Plant Prot 1:1

    Google Scholar 

  • Sasser JN, Eisenback JD, Carter CC, Triantaphyllou AC (1983) The international meloidogyne project-its goals and accomplishments. Ann Rev Phytopathol 21(1):271–288

    Article  Google Scholar 

  • Sayre RM, Starr MP (1985) Pasteuria penetrans (ex Thorne, 1940) nom. Rev., comb. n., sp. n., a mycelial and endospore-forming bacterium parasitic in plant-parasitic nematodes. Proc Helminthol Soc Wash 52(2):149–165

    Google Scholar 

  • Sayre RM, Wergin WP (1977) Bacterial parasite of a plant nematode: morphology and ultrastructure. J Bacteriol 129(2):1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Sayre RM, Wergin WP, Schmidt JM, Starr MP (1991) Pasteuria nishizawae sp. nov., a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera. Res Microbiol 142(5):551–564

    Article  CAS  PubMed  Google Scholar 

  • Shahid S, Khan MR (2019) Evaluation of biocontrol agents for the management of root-rot of mungbean caused by Macrophomina phaseolina. Indian Phytopathol (India) 72:89–98

    Article  Google Scholar 

  • Shakeel A, Khan AA, Haris M (2020) Multifaceted strategies used by root-knot nematodes to parasitize plants-a review. Phyton Int J Exp Bot 89(2):205

    Google Scholar 

  • Sharma A, Trivedi PC (1987) Screening of substrates suitable for the growth of Paecilomyces lilacinus. Int Nematol Netw Newsl 4:24–26

    Google Scholar 

  • Sharma A, Trivedi PC (1989) Control of root-knot nematodes on Trigonella foenum-graecum by Paecilomyces lilacinus. Nematol Mediterr 17:2

    Google Scholar 

  • Sharma R, Trivedi PC (1994) Interaction of root-knot nematode, Meloidogyne incognita and VA mycorrhizae, Glomus fasciculatum & glomus mosseae on Brinjal (Solanum melongena L.). Indian Bot Soc 73(3–4):221–224

    Google Scholar 

  • Shingles J, Lilley CJ, Atkinson HJ, Urwin PE (2007) Meloidogyne incognita: molecular and biochemical characterization of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115:114–120

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MA (2005) Management of plant parasitic nematodes by soil solarization. In: Nehra S (ed) Plant diseases biocontrol management. Avishkar Publishers Distributors, Jaipur, pp 238–253

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995) Some observations on the management of the wilt disease complex of pigeonpea by treatment with a vesicular arbuscular fungus and biocontrol agents for nematodes. Bioresour Technol 54(3):227–230

    Article  CAS  Google Scholar 

  • Sikora RA (1979) Predisposition to Meloidogyne infection by the endotrophic mycorrhizal fungus glomus mosseae. Root-knot nematodes (Meloidogyne species) systematics, biology and control; GBR, vol 71. Academic Press, London, pp 399–405

    Google Scholar 

  • Sikora RA, Carter WW (1987) Nematode interactions with fungal and bacterial plant pathogens: fact or fantasy

    Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  CAS  PubMed  Google Scholar 

  • Singh UB, Sahu A, Sahu N, Singh RK, Renu S, Singh DP, Singh KP (2013) Arthrobotrys oligospora-mediated biological control of diseases of tomato (Lycopersicon esculentum mill.) caused by Meloidogyne incognita and Rhizoctonia solani. J Appl Microbiol 114(1):196–208

    Article  CAS  PubMed  Google Scholar 

  • Sosamma VK, Koshy PK (1997) Biological control of Meloidogyne incognita on black pepper by Pasteuria penetrans and Paecilomyces lilacinus. J Plant Crops 25(1):72–76

    Google Scholar 

  • Spatafora JW, Quandt CA, Kepler RM, Sung GH, Shrestha B, Hywel-Jones NL, Luangsa-Ard JJ (2015) New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus 6:357–362

    Article  PubMed Central  Google Scholar 

  • Starr MP, Sayre RM (1988) Pasteuria thornei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne. Ann Inst Pasteur Microbiol 139(1):11–31

    Article  CAS  PubMed  Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes: progress, problems and prospects. CAB International, Wallingford, p 282

    Google Scholar 

  • Stirling GR, Bird AF, Cakurs AB (1986) Attachment of Pasteuria penetrans spores to the cuticle of root knot nematodes. Revue Nematol 9:251–260

    CAS  Google Scholar 

  • Sturhan D (1988) New host and geographical records of nematode-parasitic bacteria of the Pasteuria penetrans group. Nematologica 34(3):350–356

    Article  Google Scholar 

  • Sukno SA, McCuiston J, Wong MY, Wang X, Thon MR, Hussey R, Baum T, Davis E (2007) Quantitative detection of double-stranded RNA-mediated gene silencing of parasitism genes in Heterodera glycines. J Nematol 39:145–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taha AESH (1993) Nematode interactions with root-nodule bacteria. Nematode Interac 1:175–202

    Article  Google Scholar 

  • Taha AHY, Raski DJ (1969) Interrelationships between root-nodule bacteria, plant-parasitic nematodes and their leguminous host. J Nematol 1(3):201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Jones MGK, Fosu-Nyarko J (2013) Gene silencing in root lesion nematodes (Pratylenchus spp) significantly reduces reproduction in a plant host. Exp Parasitol 133:166–178

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y (2010) Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol 153:632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tribe HT (1977) Pathology of cyst-nematodes. Biol Rev 52(4):477–507

    Article  Google Scholar 

  • Tribe HT (1979) Extent of disease in populations of heterodera, with especial reference to H. schachtii. Ann Appl Biol 92(1):61–72

    Article  Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double stranded RNA by pre-parasitic juvenile cyst nematodes leads to RNA interference. Mol Plant-Microbe Interact 15:747–752

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of argonaute 1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma AC, Khan MN (2004) Potentiality of botanicals for managing Meloidogyne incognita in Ocimum canum. Ann Plant Prot Sci 12(2):464–465

    Google Scholar 

  • Wang Z, Shuie L, Jones MGK (2008) Use of a double promoter system to target nematode feeding cells. In: Proceedings of the EU COST ACTION 872 workshop, exploiting genomics to understand plant-nematode interactions, Postonja

    Google Scholar 

  • Wang X, Yang Y, Yu C, Zhou J, Cheng Y, Yan C, Chen J (2010) A highly efficient method for construction of rice artificial MicroRNA vectors. Mol Biotechnol 46:211–218

    Article  CAS  PubMed  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22(7):396–403

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci U S A 107:1606–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Ren Y, Chen A, Yang C, Zheng Q, Chen J, Wang D, Li Y, Hu S, Xu G (2022) Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi. J Plant Physiol 269:153591

    Article  CAS  PubMed  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  PubMed  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef MMA, Ali MS (1998) Management of Meloidogyne incognita infecting cowpea by using some native blue green algae. Anz Schädlingskde Pflanzenschutz Umweltschutz 71:15–16

    Article  Google Scholar 

  • Zaki FA (1994) Effect of culture filtrates of Paecilomyces lilacinus on Meloidogyne javanica. Nematol Mediterr 22:41–43

    Google Scholar 

  • Zavaleta-Mejia E (1985) The effect of soil bacteria on Meloidogyne incognita (Kofoid and White) Chitwood infection. Ph.D. thesis. University of California, Riverside, CA

    Google Scholar 

  • Zuckerman BM, Dicklow MB, Acosta N (1993) A strain of Bacillus thuringiensis for the control of plant-parasitic nematodes. Bioc Sci Technol 3(1):41–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.R., Ahamad, F., Rizvi, T.F., Akram, M. (2023). Root–Knot Nematodes in Vegetables and Ornamentals and Their Management by Novel Biological and Biotechnological Tools. In: Khan, M.R. (eds) Novel Biological and Biotechnological Applications in Plant Nematode Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-2893-4_12

Download citation

Publish with us

Policies and ethics