Skip to main content

Advertisement

Log in

Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To control Heterodera glycines Ichinohe (soybean cyst nematode) in Glycine max (L.) Merr. (soybean), we evaluated the use of producing transgenic soybean seedlings expressing small interfering RNAs (siRNAs) against specific H. glycines genes. Gene fragments of three genes related to nematode reproduction or fitness (Cpn-1, Y25 and Prp-17) were PCR-amplified using specific primers and independently cloned into the pANDA35HK RNAi vector using a Gateway cloning strategy. Soybean roots were transformed with these constructions using a composite plant system. Confirmation of transformation was attained by PCR and Southern blot analysis. Transgene expression was detected using reverse transcription PCR (RT-PCR) and expression of siRNAs was confirmed in transgenic plants using northern blot analysis. Bioassays performed on transgenic composite plants expressing double-stranded RNA fragments of Cpn-1, Y25 and Prp-17 genes resulted in a 95, 81 and 79% reduction for eggs g−1 root, respectively. Furthermore, we demonstrated a significant reduction in transcript levels of the Y25 and Prp-17 genes of the nematodes feeding on the transgenic roots via real-time RT-PCR whereas the expression of non-target genes were not affected. The results of this study demonstrate that over-expression of RNA interference constructs of nematode reproduction or fitness-related genes can effectively control H. glycines infection with levels of suppression comparable to conventional resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog

AS:

Acetosyringone

PCR:

Polymerase chain reaction

dsRNA:

Double-stranded RNA

RNAi:

RNA interference

siRNA:

Small interfering RNA

LMW:

Low molecular weight

HMW:

High molecular weight

RT-PCR:

Reverse transcription PCR

GOI:

Gene of interest

References

  • Alkharouf NW, Klink VP, Matthews BF (2007) Identification of Heterodera glycines (soybean cyst nematode [SCN]) cDNA sequences with high identity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Exp Parasitol 115:247–258

    Article  CAS  PubMed  Google Scholar 

  • Bakhetia M, Charlton WL, Atkinson HJ, McPherson MJ (2005) RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol Plant Microbe Interact 18:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Bekal S, Niblack TL, Lambert KN (2003) A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Mol Plant Microbe Interact 16:439–446

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–670

    CAS  PubMed  Google Scholar 

  • Collier R, Fuchs B, Walter N, Lutke WK, Taylor CG (2005) Ex vitro chimeric plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  CAS  PubMed  Google Scholar 

  • Delloporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 4:19

    Article  Google Scholar 

  • Dong K, Barker KR, Opperman CH (1997) Genetics of soybean Heterodera glycines interactions. J Nematol 29:509–522

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer JA (2000) Functional genomic analysis of C elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Jorgensen JE, Stougaard J, Marcher KA (1989) Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep 8:12–15

    Article  Google Scholar 

  • Hershman DE, Heinz RD, Kennedy BS (2008) Soybean cyst nematode, Heterodera glycines, populations adapting to resistant soybean cultivars in Kentucky. Plant Dis 92:1475

    Article  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  CAS  PubMed  Google Scholar 

  • Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG (2007) Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol Plant Microbe Interact 20(3):293–305

    Article  CAS  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1:187–198

    Article  CAS  PubMed  Google Scholar 

  • Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF (2007) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 226:1389–1409

    Article  CAS  PubMed  Google Scholar 

  • Klink VP, Hosseini P, MacDonald MH, Alkharouf NW, Matthews BF (2009a) Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking. BMC Genomics 10:111. doi:10.1186/1471-2164-10-111

    Article  PubMed  Google Scholar 

  • Klink VP, Hosseini P, Matsye P, Alkharouf NW, Matthews BF (2009b) A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). Plant Mol Biol 71:525–567

    Article  CAS  PubMed  Google Scholar 

  • Klink VP, Kim KH, Martins V, Macdonald MH, Beard HS, Alkharouf NW, Lee SK, Park SC, Matthews BF (2009c) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta 230:53–71

    Article  CAS  PubMed  Google Scholar 

  • Li JR, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113–123

    Article  CAS  PubMed  Google Scholar 

  • Liu QH, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang XD (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 26:1921–1925

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maeda I, Kohara Y, Yamamoto M, Sugimoto A (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11:171–176

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R, Wang G, Knap HT (1999) Polygalacturonase and polygalacturonase inhibitor protein: gene isolation and transcription in Glycine maxHeterodera glycines interactions. Mol Plant Microbe Interact 12:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495

    Article  CAS  PubMed  Google Scholar 

  • Mitchum MG, Wrather JA, Heinz RD, Shannon JG, Danekas G (2007) Variability in distribution and virulence phenotypes of Heterodera glycines in Missouri during 2005. Plant Dis 91:1473–1476

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Nickel W, Brügger B, Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115:3235–3240

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schmitt DP, Shannon G (1992) Differentiating soybean responses to Heterodera glycines races. Crop Sci 32:275–277

    Google Scholar 

  • Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PVE, Kamath FS, Fraser AG, Ahringer J, Plasterk RHA (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1:77–84

    Article  CAS  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  CAS  PubMed  Google Scholar 

  • Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469

    Article  CAS  PubMed  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  CAS  Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double stranded RNA by pre-parasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15:747–752

    Article  CAS  PubMed  Google Scholar 

  • Wrather JA, Koenning SR (2006) Estimates of disease effects on soybean yields in the United States 2003–2005. J Nematol 38:173–180

    PubMed  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Kansas State University, the Kansas Soybean Commission and USDA NRICGP Grant # 2004-35607-14970. This article is contribution no. 10-236-J from the Kansas Agricultural Experimental Station, Kansas State University, Manhattan, Kansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold N. Trick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Todd, T.C., Oakley, T.R. et al. Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe. Planta 232, 775–785 (2010). https://doi.org/10.1007/s00425-010-1209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1209-7

Keywords

Navigation