Skip to main content

Fungal Bioinoculants for Plant Disease Management

  • Chapter
  • First Online:
Microbes and Microbial Technology

Abstract

Plant diseases are among the major constraints in the production of food crops and inflict significant losses to global agriculture. Pesticides are widely used to control plant diseases but their application is costly and, in some cases, may bring more disadvantages than benefits. Use of bioinoculants to control plant diseases is an economically viable and ecologically sustainable method of disease management. A large number of bioinoculants is available; among them, bioinoculant fungi constitute the majority and are widely used in different cropping systems. Important bioinoculants that directly parasitize plant pathogens include Trichoderma spp., Paecelomyces lilacinus, and Pochonia chlamydosporia. Plant growth-promoting fungi such as Aspergillus spp. and Penicillium spp. may also suppress plant pathogens. In general, bioinoculants are effective against seed- and soil-borne fungi and nematodes. However, an important limitation in their commercial use in crop protection is nonavailability of efficient immobilizing systems for delivery and survival of bioinoculants. This chapter describes important bioinoculants, their effects, and their mechanisms of action against plant diseases caused by fungi, bacteria, and nematodes. State-of-the-art technology available for the production of commercial formulation of bioinoculants, along with important lacuna, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios, G. N. 2005. Plant pathology. San Diego, CA: Elsevier Academic Press.

    Google Scholar 

  • Ahmad, I., Ansari, M. I., and Aqil, F. 2006. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J. Exp. Biol. 44: 73–76.

    CAS  Google Scholar 

  • Akram, M., and Khan, M. R. 2006. Interaction of Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici on tomato. Ann. Plant Prot. Sci. 14(2): 448–451.

    Google Scholar 

  • Ambrosino, P., Prisco, R., Ruocco. M., Lanzuise, S., Ritieni, A., Woo, S. L., Scala, F., and Lorito, M. 2005. Biological control of apple and tomato postharvest diseases caused by Botrytis cinerea and Alternaria alternata by using culture filtrates of Trichoderma harzianum T22. J. Plant Pathol. 87(4): 267–309.

    Google Scholar 

  • Andrews, J. H., Berbee, F. M., and Nordheim, E. V. 1983. Microbial antagonism to the imperfect stage of the apple scab pathogen, Venturia inaequalis. Phytopathology 73: 228–234.

    Google Scholar 

  • Angappan, K. 1992. Biological control of chickpea root rot caused by Macrophomina phaseolina (Tassi) Goid. M. Sc. (Ag.) Thesis, pp. 114. Coimbatore: TNAU.

    Google Scholar 

  • Angappan, K., Dureja, P., and Sen, B. 1996. Multiprong actions of biocontrol agent, Aspergillus niger AN27. Second International Crop Science Congress on Crop Productivity and Sustainability – Shaping the Future, Abstract of Poster Session, pp. 301, Nov. 17–24, 1996. New Delhi.

    Google Scholar 

  • Ashraf, M. S., and Khan, T. A. 2008. Biomanagement of reniform nematode, Rotylenchulus reniformis by fruit wastes and Paecilomyces lilacinus on chickpea. World J. Agric. Sci. 4: 492–494.

    Google Scholar 

  • Atkinson, G. F. 1892. Some diseases of cotton. Alabama Agricultural Experiment Station Bulletin 41, pp. 65.

    Google Scholar 

  • Backman, P. A., and Rodriguez-Kabana, R. 1975. A system for the growth and delivery of biological control agent to the soil. Phytopathology 65: 819–821.

    Google Scholar 

  • Bai, Z. H., Zhang, H. X., Qi, H. Y., Peng, X. W., and Li, B. J. 2004. Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bioresour. Technol. 99(1): 49–52.

    Google Scholar 

  • Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25: 67–85.

    Google Scholar 

  • Baker, K. F., and Cook, R. J. 1974. Biological control of plant pathogens, pp. 433. San Francisco, Freeman and Co.

    Google Scholar 

  • Bateman, R. P., and Alves, R. T. 2000. Delivery systems for mycoinsecticides using oil-based formulations. Asp. Appl. Biol. 57: 163–170.

    Google Scholar 

  • Baytak, S., Turker, A. R., and Cevrimli, B. S. 2005. Application of silica gel 60 loaded with Aspergillus niger as a solid phase extractor for the separation/preconcentration of chromium(III), copper(II), zinc(II), and cadmium(II). J. Sep. Sci. 28: 2482–2488.

    CAS  Google Scholar 

  • Beagle-ristaino, J. E., and Papavizas, G. C. 1985. Survival and proliferation of Trichoderma spp. and Gliocladium (Trichoderma) virens in soil and in plant rhizospheres. Phytopathology 75: 729–732.

    Google Scholar 

  • Bell, D. K., Wells, H. D., and Markham, C. R. 1982. In vitro antagonism of Trichoderma species against fungal pathogens. Phytopathology 72: 379–382.

    Google Scholar 

  • Benitez, T., Rincon, A. M., Limon, M. C., and Codon, A. C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7(4): 249–260.

    CAS  Google Scholar 

  • Bhardwaj, P., and Trivedi, P. C. 1996. Biological control of Heterodera avenae on wheat using different inoculum levels of Verticillium chlamydosporium. Ann. Plant Prot. Sci. 4: 111–114.

    Google Scholar 

  • Bhatnagar, H. 1995. Integrated use of biocontrol agents with fungicides to control wilt incidence in pigeon-pea. World J. Microbiol. Biotechnol. 11: 564–566.

    CAS  Google Scholar 

  • Blakeman, J. P. 1985. Ecology succession of leaf surface microorganisms in relation to biological control. In Biological control on the phylloplane, eds. C. E. Windels and S. E. Lindow, pp. 6–30. St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Blakeman, J. P., and Fokema, N. J. 1982. Potential for biological control of plant disease on the phylloplane. Annu. Rev. Phytopathol. 20: 167.

    Google Scholar 

  • Bokhari, F. M. 2009. Efficacy of some Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Arch. Phytopathol. Plant Prot. 42(4): 361–369.

    CAS  Google Scholar 

  • Brannen, R. 1995. Production of antibiotics by Bacillus subtilis and their effect on fungal colonists of various crops. Trans. Br. Mycol. Soc. 65: 203.

    Google Scholar 

  • Braud, A., Karine, J. E., Vieille, E., Triller, A., and Lebeau, T. 2006. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut.: Focus 6: 261–279.

    CAS  Google Scholar 

  • Brewer, M. T., and Larkin, R. P. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Prot. 24(11): 939–950.

    Google Scholar 

  • Bruckner, H., and Pryzybylski, M. 1984. Isolation and structural characterization of polypeptides antibiotics of the peptaidol class by HPLC with field desorption and fast atom bombardment mass spectrometry. J. Chromatogr. 296: 263–275.

    Google Scholar 

  • Brunner, K., Susanne, Z., Rosalia, C., Sheridian, L. W., Matteo, L., Christian, P. K., and Robert, L. M. 2005. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Appl. Environ. Microbiol. 71(7): 3959–3965.

    CAS  Google Scholar 

  • Buchi, G., Francisco, M. A., and Murry, W. W. 1983. Aspersitin – a new metabolites of Aspergillus parasiticus. Tetrahedron Lett. 24: 2527–2530.

    Google Scholar 

  • Cabanillas, E., and Barkar, K. R. 1989. Impact of Paecilomyces lilacinus inoculum level and application time on control of Meloidogyne incognita on tomato. J. Nematol. 21: 115–120.

    CAS  Google Scholar 

  • Calderon, A. A., Zapata, J. M., Munoz, R., Pedreno, M. A., and Barcelo, A. R. 1993. Resversatrol production as a part of the hypersensitive like response of grapevine cells to an elicitor from Trichoderma viride. New Phytol. 124: 455–463.

    CAS  Google Scholar 

  • Cannayane, I., and Rajendran, G. 2001. Application of biocontrol agents and oil cakes for the management of Meloidogyne incognita in brinjal (Solanum melongena L.). Curr. Nematol. 12(2): 51–55.

    Google Scholar 

  • Cervone, F., De Lorenzo, G., Degra, L., and Salvi, G. 1987. Elicitation of necrosis in Vigna unguiculata Walps Aspergillus niger endopolygalacturonase and a-d-galacturonate oligomers. Plant Physiol. 85: 626–630.

    CAS  Google Scholar 

  • Chambers, S. M., and Scott, E. S. 1995. In vitro antagonism of Phytophthora cinnamomi and P. citricola by isolates of Trichoderma spp. and Gliocladium virens. J. Phytopathol. 143(8): 471–477.

    Google Scholar 

  • Chang, R. S., Ries, S. M., and Pataky, J. K. 1992. Reduction in yield of processing tomatoes and incidence of bacterial canker. Plant Dis. 76: 805.

    Google Scholar 

  • Chattopadhyay, C., and Sen, B. 1996. Integrated management of Fusarium wilt of muskmelon caused by Fusarium oxysporum. Indian J. Mycol. Plant Pathol. 26: 162–170.

    Google Scholar 

  • Chaudhary, R. G., and Prajapati, R. K. 2004. Comparative efficacy of fungal bioagents against Fusarium udum. Ann. Plant Prot. Sci. 12(1): 75–79.

    Google Scholar 

  • Chet, I., and Inbar, J. 1994. Bilogical control of fungal pathogen. Appl. Biochem. Biotechnol. 48: 37–43.

    CAS  Google Scholar 

  • Chet, I., Inbar, J., and Hadar, I. 1997. Fungal antagonists and mycoparasites. In The mycota IV: environmental and microbial relationships, eds. D. T. Wicklow and B. Soderstrom, pp. 165–184. Springer: Berlin, Heidelberg, New York.

    Google Scholar 

  • Cipriano, T., Cirvilleri, G., and Cartia, G. 1989. In-vitro activity of antagonistic microorganisms against Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato crown root-rot. Inf. Fitopatol. 39(5): 46–48.

    Google Scholar 

  • Claydon, N., Hanson, J. R., Trunch, A., and Avent, A. G. 1991. Harzianolide – a butenolid metabolite from cultures of Trichoderma harzianum. Phytochemistry 301: 3802–3803.

    Google Scholar 

  • Cook, R. J., and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens, pp. 539. St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  • D’Souza, S. F., and Melo, J. S. 1991. A method for the preparation of coimmobilizates by adhesion using polyethylenimine. Enzyme Microb. Technol. 13(6): 508–511.

    Google Scholar 

  • Dana, M. M., Limon, M. C., Mejias, R., Mach, R. L., Benitez, T., Pinter-Toro, J. A., and Kubicek, C. P. 2001. Regulation of chitinase 33 (chite 33) gene expression in Trichoderma harzianum. Curr. Genet. 38: 335–342.

    Google Scholar 

  • Das, I. K. 1998. Kalisena, a novel biopesticide for disease free crop and better yield. Proceedings of the National Symposium on Development of Microbial Pesticides and Insect Pest Management, November 12th and 13th, 1998. Pune: BARC Mumbai and Hindustan Antibiotics Ltd.

    Google Scholar 

  • De Bach, P. 1964. The scope of biological control. In Biological control of insect pests and weeds, ed. P. DeBach, pp. 3–20. London: Chapman and Hall Ltd.

    Google Scholar 

  • De Leij, F. A. A. M., and Kerry, B. R. 1991. The nematophagous fungus, Verticillium chlamaydosporium, as a potential biological control agent Meloidogyne arenaria. Rev. Nematol. 14: 157–164.

    Google Scholar 

  • De Leij, F. A. A. M., Kerry, B. R., and Denneh, J. A. 1992. The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita. Nematologica 38: 112–122.

    Google Scholar 

  • De leij, F. A. A. M., Kerry, B. R., and Denneby, J. A. 1993. Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita and M. hapla in plant and microplot tests. Nematologica 39: 115–126.

    Google Scholar 

  • De, R. K., and Mukhopadhyay, A. N. 1994. Biological control of tomato damping off by Gliocladium virens. J. Biol. Control 8(1): 34–40.

    Google Scholar 

  • Dean, J. F. D., and Anderson, J. D. 1991. Ethylene biosynthesis inducing xylanase. Plant Physiol. 95: 316–323.

    CAS  Google Scholar 

  • Delgado-Jarana, J., Moreno-Mateos, M. A., and Benitez, T. 2003. Glucose uptake in Trichoderma harzianum: role of gtt 1. Eukaryot. Cell 2: 708–717.

    CAS  Google Scholar 

  • Dennis, C., and Webster, J. 1971a. Antagonistic properties of species group of Trichoderma-I. Production of nonvolatile antibiotics. Trans. Br. Mycol. Soc. 157: 25–39.

    Google Scholar 

  • Dennis, C., and Webster, J. 1971b. Antagonistic properties of species group of Trichoderma-I. Production of nonvolatile antibiotics. Trans. Br. Mycol. Soc. 157: 41–60.

    Google Scholar 

  • Deshmukh, P. P., and Pant, J. G. 1992. Antagonism by Trichoderma spp. on five plant pathogenic fungi. N. Agriculturist 2: 127–130.

    Google Scholar 

  • Devay, J. E. 1956. Mutual relationships in fungi. Annu. Rev. Microbiol.10: 115–140.

    CAS  Google Scholar 

  • Dhawan,  S. C.,  Singh,  S., and Kamra,  A. 2008. Bio-management of root-knot nematode, Meloidogyne incognita by Pochonia chlamydosporia and Pseudomonas fluorescens on Brinjal in farmer’s field. Indian J. Nematol. 38(1): 110–111.

    Google Scholar 

  • Dhedhi, B. M., Gupta, O., and Patel, V. A. 1990. Influence of metabolites of microorganisms on the growth of Fusarium oxysporm f. sp. ciceri. Indian J. Mycol. Plant Pathol. 20(1): 66–69.

    Google Scholar 

  • Di Pietro, A., Lorito, M., Hayes, C. K., Broadway, M. R., and Harman, G. E. 1993. Endochitinase from Gliocladium virens: isolation, characterization and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83: 308–313.

    Google Scholar 

  • Dubos, B., and Bulit, J. 1981. Filamentous fungi as biocontrol agents on aerial plant surfaces. In Microbial ecology of the phylloplane, ed. J. P. Blakeman, pp. 353–367. London: Academic Press.

    Google Scholar 

  • Eapen, S. J., and Venugopal, M. N. 1995. Field evaluation of Trichoderma spp. and Paecilomuces lilacinus for control of root knot nematodes and fungal diseases of cardamom nurseries (abs.). Indian J. Nematol. 25: 15–16.

    Google Scholar 

  • Eisendle, M., Oberegger, H., Buttinger, R., Illmer, P., and Hass, H. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryot. Cell 3: 561–563.

    CAS  Google Scholar 

  • El Ghaouth, A., Wilson, C. L., and Wisniewski, M. 2003. Control of postharvest decay of apple fruits with Candida saitoana and induction of defense responses. Phytopathology 93: 344–348.

    Google Scholar 

  • Elad, Y., and Chet, I., 1987, Possible role of competition for nutrient in biocontrol of Pythium damping-off by bacteria. Phytopathology 77: 190–195.

    Google Scholar 

  • Elad, Y., Barak, R., Chat, I., and Hanis, Y. 1983. Ultrastructural studies of the interaction between Trichoderma spp. and plant pathogenic fungi. J. Phytopathol. 107: 168–175.

    Google Scholar 

  • Elad, Y., Freeman, S., and Monte, E. 2000. Biocontrol agents: mode of action and interaction with other means of control. Sevilla, Espana: IOBC/WPRS Bulletin vol. 24.

    Google Scholar 

  • El-Hasan, A., Walker, F., and Buchenauer, H. 2007. Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J. Phytopathol. 156: 79–87.

    Google Scholar 

  • FAOSTAT. 2003. Derived from data supplied by United Nations Food and Agriculture Organization, FAOStat, http://faostat.fao.org/site/567/desktopdefault.aspx

  • Fleming, R. A. 1980. The potential for control of cereal rust by natural enemies. Theor. Popul. Biol. 18(3): 374–395.

    Google Scholar 

  • Floch, G. L., Vallance, J., Benhamou, N., and Rey, P. 2009. Combining the oomycete Pythium oligandrum with two other antagonistic fungi: root relationships and tomato grey mold biocontrol. Biol. Control 50(3): 288–298.

    Google Scholar 

  • Fokkema, N. J. 1971. The effect of pollen in the phyllosphere of rye on colonization by saprophytic fungi and on infection by Helminthosporium stivum and other leaf pathogen. Neth. J. Plant Pathol. 77: 1–60.

    Google Scholar 

  • Fravel, D. R., Marois, J. J., Lumsden, R. D., and Connick, W. J. Jr. 1985. Encapsulation of potential biocontrol agents in an alginate clay mixture. Phytopathology 75: 774–777.

    Google Scholar 

  • Fujimoto, Y., Miyagawa, H., Tsurushima, T., Irie, H., Okamura, K., and Ueno, T. 1993. Structures of antafumicins AaA and B, novel antifungal substances produced by the fungus Aspergillus niger NH 401. Biosci. Biotechnol. Biochem. 57: 1222–1224.

    CAS  Google Scholar 

  • Gao, K. X., Liu, X. G., Gao, R. F., Huai, W. X., and Zhang, M. 2001. Study on the antagonism of Trichoderma spp on canker pathogen fungi of popular. Scientia-Silvae-Sinicae 37(5): 82–86.

    CAS  Google Scholar 

  • Garcia, L., Bulnes, C., Melchor, G., Vega, E., Ileana, M., de Oca, N. M., Hidalgo, L., and Marrero, E. 2004. Safety of Pochonia chlamydosporia var catenulata in acute oral and dermal toxicity/pathogenicity evaluations in rats and rabbits. Vet. Hum. Toxicol. 46(5): 248–250.

    Google Scholar 

  • Garrett, S. D. 1965. Toward biological control of soilborne plant pathogens. In Ecology of soilborne plant pathogens, eds. K. F. Baker and W. C. Snyder, pp. 4–17. Berkeley, CA: University of California Press.

    Google Scholar 

  • Gaur, A. C. 1990. Phosphate solubilising microorganisms as biofertilizers. New Delhi: Omega Scientific Publishes.

    Google Scholar 

  • Gurha, S. N. 2001. Effect of some Trichoderma spp. on Fusarium oxysporum sp. ciceri in vitro. Ann. Plant Prot. Sci. 9: 332–334.

    Google Scholar 

  • Hanada, R. E., Alan P. W. V., Soberanis, W., Leandro, L. L. J., and Pereira, J. O. 2009. Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol. Control 50(2): 143–149.

    Google Scholar 

  • Hanson, L. E., and Howell, C. R. 2004. Elicitors of plant defense responses from biocontrol strain of Trichoderma virens. Phytopathology 94(2): 171–176.

    CAS  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nat. Rev. 2: 43–56.

    CAS  Google Scholar 

  • Hartley, C. 1921. Damping off in forest nurseries, pp. 1–99. Washington, DC: USDA Bulletin 934.

    Google Scholar 

  • Hewlett, T. E., Dickson, D. W., Mitchell, D. J., and Kannwischer-Mitchell, M. E. 1988. Evaluation of Paecilomyces lilacinus as a biocontrol agent of Meloidogyne javanica on tobacco. J. Nematol. 20: 578–584.

    CAS  Google Scholar 

  • Hijwegen, T. 1986. Biological control of cucumber powdery mildew by Tilletiopsis minor. Neth. J. Plant Pathol. 92: 93–95.

    Google Scholar 

  • Hillocks, R. J. 1986. Cross protection between strains of Fusarium oxysporum f.sp. vasinfectum and its effect on vascular resistance mechanism. J. Phytopathol. 117: 216.

    Google Scholar 

  • Horsfall, J. G., and Cowling, E. B. 1977. Prologue: how disease is managed. In Plant disease – an advanced treatise, eds. J. G. Horsfall and E. B. Cowling, pp. 1–9. New York: Academic Press.

    Google Scholar 

  • Howell, C. R. 2003. Mechanism employed by Trichoderma spp. in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87: 4–10.

    Google Scholar 

  • Howell, C. R., and Stipanovic, R. D. 1980. Suppression of Pythium ultimum induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoleutorin. Phytopathology 70: 712–715.

    CAS  Google Scholar 

  • Howell, C. R., and Stipanovic, R. D. 1983. Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum. Can. J. Microbiol. 29: 321–324.

    CAS  Google Scholar 

  • Howell, C. R., Hanson, L. E., Stipanovic, R. D., and Puckhaber, L. S. 2000. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90: 248–252.

    CAS  Google Scholar 

  • Hyseik, J., Vach, M. et al. 2002. The influence of the application of mineral fertilizers with the biopreparation Supresivit (Trichoderma harzianum) on the health and yield of different crops. Arch. Phytopathol. Plant Prot. 35(2): 115.

    Google Scholar 

  • Ibrahimov, A. S., Zafari, D. M., Valizadeh, E., and Akrami, M. 2009. Control of Fusarium rot of bean by combination of by Trichoderma harzianum and Trichoderma asperellum in greenhouse condition. Agric. J. 4: 121–123.

    Google Scholar 

  • Indian Institute of Spices Research (IISR). 1995. Annual report 1994–95, pp. 89. Calicut, India: Indian Institute of Spices Research (IISR).

    Google Scholar 

  • Irina, G., Cornea, C. P., Mateescu, R., Olteanu, V., and Voaides, C. 2006. Control of postharvest fruit rot in apricot and peach by Metschnikowia pulcherrima. Bulletin USAMV-CN 62: 74–79.

    Google Scholar 

  • Jadhav, R. S., Thaker, N. V., and Desai, A. 1994. An iron-inefficient variety of peanut plant, grown hydroponically with the catechol siderophore. World J. Microbiol. Biotechnol. 10: 360–361.

    CAS  Google Scholar 

  • Janisiewicz, W. J., and Jeffers, S. N. 1997. Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Prot. 16: 629–633.

    CAS  Google Scholar 

  • Jatala, P. 1986. Biological control of plant parasitic nematodes. Annu. Rev. Phytopathol. 24: 453–491.

    Google Scholar 

  • Jatala, P., Kaltenback, R., and Bocangel, M. 1979. Biological control of Meloidogyne incognita, acrita and Globodera pallida on potatoes. J. Nematol. 11: 303.

    Google Scholar 

  • Jegathambigai, V., Wijeratnam, R. S. W., and Wijesundera, R. L. C. 2009. Trichoderma as a seed treatment to control Helminthosporium leaf spot disease of Chrysalidocarpus lutescens. World J. Agric. Sci. 5(6): 720–728.

    Google Scholar 

  • Jindal, K. K. 1990. Emerging bacterial disease of temperate fruits in Himachal Pradesh. Plant Dis. Res. (Special). 5: 151–155.

    Google Scholar 

  • Jones, R. W., Pettit, R. E., and Taker, R. A. 1984. Lignite and stillage carrier and substrate for application of fungal biocontrol agent to soil. Phytopathology 74: 1167–1170.

    CAS  Google Scholar 

  • Juan, A. V. N., Luis, S., Angela B., Francisca V., Santiago G. R., Rosa, M. H., and Enrique, M. 2005. Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol. Res. 109(12): 1397–1406.

    Google Scholar 

  • Kalita, P., Bora, L. C., and Bhagabati, K. N. 1996. Phylloplane microflora of citrus and their role in management of citrus canker. Indian Phytopathol. 49: 234–237.

    Google Scholar 

  • Kaur, M. P., and Mukhopadhyay, A. N. 1992. Integrated control of chickpea wilt complex by Trichoderma and chemical methods in India. Trop. Pest Manag. 38(4): 373–375.

    Google Scholar 

  • Kelley, W. D. 1976. Evaluation of Trichoderma harzianum-impregnated clay granules as a biocontrol for damping-off of pine seedlings caused by Phytophthora cinnamomi. Phytopathology 66: 1023–1027.

    Google Scholar 

  • Kerry, B. R. 1988. Two microorganisms for the biological control of plant parasitic nematodes. Proc. Brighton Crop Prot. Conf. 2: 603–607.

    Google Scholar 

  • Kerry, B. R., Crump, D. H., and Mullen, L. A. 1982a. Studies of the cereal cyst nematode Heterodera avenae under continuous cereals. 1974-1978. I. Plant growth and nematode multiplication. Ann. Appl. Biol. 100: 477–487.

    Google Scholar 

  • Kerry, B. R., Crump, D. H., and Mullen, L. A. 1982b. Studies of the cereal cyst nematode Heterodera avenae under continuous cereals. 1975-1978. II. Fungal parasitism of nematode females and eggs. Ann. Appl. Biol. 100: 489–499.

    Google Scholar 

  • Khan, M. R. 2005. Biological control of Fusarial wilt an root-knot of legumes. New Delhi: Department of Biotechnology, Ministry of Science and Technology.

    Google Scholar 

  • Khan, M. R. 2007. Prospects of microbial control of root-knot nematodes infecting vegetable crops. In Biotechnology: plant health management, eds. N. Sharma and H. B. Singh, pp. 659–690. Lucknow: International Book Distributing Co.

    Google Scholar 

  • Khan, M. R. 2008. Plant nematodes: methodology, morphology, systematics, biology and ecology, pp.360. Enfield, NH: Science publishers.

    Google Scholar 

  • Khan, M. R., and Akram, M. 2000. Effect of certain antagonistic fungi and rhizobacteria on wilt disease complex caused by Meloidogyne incognita and Fusarium oxysporium f.sp. lycopersici on tomato. Nematol. Mediterr. 28: 139–144.

    Google Scholar 

  • Khan, M. R., and Anwer, M. A. 2007. Molecular and biochemical characterization of soil isolates of Aspergillus niger and assessment of antagonism against Rhizoctonia solani. Phytopathol. Mediterr. 46: 304–315.

    CAS  Google Scholar 

  • Khan, M. R., and Anwer, M. A. 2008. DNA and some laboratory tests of nematode suppressing efficient soil isolates of Aspergillus niger. Indian Phytopathol. 61(2): 212–225.

    CAS  Google Scholar 

  • Khan, M. W., and Dasgupta, N. K. 1993. The concept of interaction. In Nematode interactions, ed. M. W. Khan, pp. 42–44. London: Chapman and Hall.

    Google Scholar 

  • Khan, M. R., and Ejaz, M. N. 1997. Effect of neem leaves and Paecilomyces lilacinus on root-knot nematode disease of okra. Vasundhara 2: 1–5.

    Google Scholar 

  • Khan, M. R., and Gupta, J. 1998. Antagonistic effects of Trichoderma species against Mcrophomina phaseolina on eggplant. J. Plant Dis. Prot. 105: 387–393.

    Google Scholar 

  • Khan, M. R., and Jairajpuri, M. S. 2010. An overview of nematode infestation in cash crops. In Nematode infestations field crop (Part 1), eds. M. R. Khan and M. S. Jairajpuri. India: National Academy of Sciences.

    Google Scholar 

  • Khan, M. R., and Kounsar, K. 2000. Effects of certain bacteria and fungi on the growth of mungbean and reproduction of Meloidogyne incognita. Nematol. Mediterr. 28: 221–226.

    Google Scholar 

  • Khan, M. R., and Mustafa, U. 2005. Root-knot nematode problem in gladiolus cultivars and their management. Int. J. Nematol. 15: 59–63.

    Google Scholar 

  • Khan, M. R., and Rehman, Z. 1997. Biomanagement of root rot of chickpea caused by Rhizoctonia. Vasundhara 3: 22–26.

    CAS  Google Scholar 

  • Khan, M. R., and Tarannum, Z. 1999. Effects of field application of various microorganisms on Meloidogyne incognita on tomato. Nematol. Mediterr. 27: 233–238.

    Google Scholar 

  • Khan, M. R., Khan, N., and Khan, S. M. 2001. Evaluation of agricultural materials as substrate for mass culture of fungal biocontrol agents of Fusarial wilt and root-knot nematode disease. Ann. Appl. Biol. (TAC-21 Suppl.) 22: 50–51.

    Google Scholar 

  • Khan, M. R., Kousar, K., and Hamid. A. 2002. Effect of certain rhizobacteria and antagonistic fungi on root-nodulation and root-knot nematode disease of green gram. Nematol. Mediterr. 30: 85–89.

    Google Scholar 

  • Khan, M. R., Khan, S. M., and Mohiddin, F. A. 2004. Biological control of fusarial wilts of chickpea through seed treatment with the commercial formulations of Trichoderma harzianum and/or Pseudomonas fluorescens. Phytopathol. Mediterr. 43: 20–25.

    Google Scholar 

  • Khan, M. R., Mohiddin, F. A., Khan, S. M., and Khan, B. 2005a. Effect of seed treatment with certain biopesticides on root-knot of chickpea. Nematol. Mediterr. 2: 107–112.

    Google Scholar 

  • Khan, M. R., Khan, S. M., and Mohiddin, F. A. 2005b. Root-knot problem of some winter ornamental plants and its biomanagement. J. Nematol. 37: 198–206.

    Google Scholar 

  • Khan, M. R., Khan, S. M., and Mohiddin, F. A., 2007. Effect of certain fungal and bacterial phosphate-solubilizing microorganisms on the fusarial wilt of tomato. In Developments in plant and soil sciences, ed. E. Velazquez-Perez, pp. 357–361. The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Khan, M. R., Altaf, S., Mohidin, F. A., Khan, U., and Anwer, A. 2009. Biological control of plant nematodes with phosphate solubilizing microorganisms. In Phosphate solubilizing microbes for crop improvement, eds. M. S. Khan and A. Zaidi, pp. 395–426. New York, USA: Nova Science Publisher Inc.

    Google Scholar 

  • Kishun, R. 1987. Loss in yield of tomato due to bacterial wilt caused by Pseudomonas. Indian Phytopathol. 40: 152.

    Google Scholar 

  • Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S., and Doke, N. 2001. Induction of systemic resistance in cucumber against several generations. Eur. J. Plant Pathol. 107: 523–533.

    CAS  Google Scholar 

  • Komatsu, M. 1968. Trichoderma viride as an antagonist of wood inhabiting Hymenomycetes, VIII. The antibiotic activity against the mycelial growth of Lentinus edodes (Berk) Sig, of three genera Trichoderma pachybasium, Gliocladium and other Sterile forms. Report of the Tottori Mycological Inst. (Japan).

    Google Scholar 

  • Krishnamurthy, J., Samiyappan, R., Vidhyasekaran, P., Nakkeeran, S., Rajeswari, E., Raja, J. A. J., and Balasubramanian, P. 1999. Efficacy of Trichoderma chitinases against Rhizoctonia solani, the rice sheath blight pathogen. J. Biosci. 24: 207–213.

    Google Scholar 

  • Kucuk, C., and Kivanc, M. 2008. Mycoparasitism in the biological control of Gibberella zeae and Aspergillus ustus by Trichoderma harzianum strains. J. Agric. Technol. 4: 49–55.

    Google Scholar 

  • Kumar,  S. 2009. Management of root-knot nematode in papaya by Pochonia chlamydosporia. Indian J. Nematol. 39(1): 48–56.

    Google Scholar 

  • Kumar, S., and Sen, B. 1998. Kalisena, a novel biopesticide for disease free crop and better yield. Proceedings of the National Symposium on Development of Microbial Pesticides and Insect Pest Management, November 12th and 13th, 1998. Pune: BARC Mumbai and Hindustan Antibiotics Ltd.

    Google Scholar 

  • Kumar, S., and Sood, A. K. 2002. Management of bacterial wilt of tomato with VAM and bacterial antagonists. Indian Phytopathol. 55(4): 513.

    Google Scholar 

  • Latorre, B. A., Lillo, C., and Rioja, M. E. 2001. Efficacia de los tratamientos fungicidas para el control de Botrytis cinerea da la vid en.function de la epoca de aplicacion. Ciencia e Investigacion Agraria 8: 61–66.

    Google Scholar 

  • Leeman, M., den Ouden, F. M., van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M., and Schipper, R. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149–155.

    CAS  Google Scholar 

  • Lim, T. K., and Teh, B. K. 1990. Antagonism in vitro of Trichoderma sp. against several basidiomycetous, soil borne pathogens and Sclerotium rolfsii. Z. Pflanzenkr. Pflanzenschutz. 97: 33–41.

    Google Scholar 

  • Lopez-llorca, L. V., Macia-vicente, J. G., and Jansson, H. B. 2008. Mode of action and interactions of nematophagous fungi. In Integrated management and biocontrol of vegetable and grain crops nematodes, eds. A. Ciancio and K. G. Mukerji, pp. 51–76. The Netherlands: Springer, Dordrecht.

    Google Scholar 

  • Lopez-Llorea, L. V., and Duncan, G. H. 1988. A study of fungal endoparasitism of the cereal cyst nematode (Heterodera avenae) by scanning electron microscopy. Can. J. Microbiol. 34: 613–619.

    Google Scholar 

  • Lorito, P., Emerson, O. H., and Lomas, N. 1993. The isolation of toxic substances from the culture filtrate of Trichoderma. Phytopathology 26: 1068.

    Google Scholar 

  • Lorito, M., Hayes, C. K., Di Pietro, A., Woo, S. L., and Harman, G. E. 1994a. Purification, characterization and synergistic activity of a glucan 1,3-a-glucoside and an N-acetyl-a-glucosaminidase from Trichoderma harzianum. Phytopathology 84: 398–405.

    CAS  Google Scholar 

  • Lorito, M., Peterbauer, C., Hayes, C. K., and Harman, G. E. 1994b. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140: 623–629.

    CAS  Google Scholar 

  • Luna, C. L., Mariano, R. L. R., and Souto-Maior, A. M. 2002. Production of a biocontrol agent for crucifer’s black rot disease. Braz. J. Chem. Eng. 19: 133–140.

    CAS  Google Scholar 

  • Lysek, H. 1966. Study of biology of geohelminths. II. The importance of some soil microorganisms for the viability of geohelminth eggs in the soil. Acta Univ. Palacki. Olomuc. 40: 83–90.

    Google Scholar 

  • Majumdar, S., and Sen, B. 1998. Kalisena, a novel biopesticide for disease free crop and better yield. Proceedings of the National Symposium on Development of Microbial Pesticides and Insect Pest Management, November 12th and 13th, 1998. Pune: BARC Mumbai and Hindustan Antibiotics Ltd.

    Google Scholar 

  • Malathi, P., and Doraisamy, S. 2004. Effect of seed priming with Trichoderma on seedborne infection of Macrophomina phaseolina and seed quality in groundnut. Ann. Plant Prot. Sci. 12(1): 87–91.

    Google Scholar 

  • Mankau, R. 1969a. Toxicity of cultures of Aspergillus niger to mycophagous nematode Aphelenchus avenae. Phytopathology 59: 13.

    Google Scholar 

  • Mankau, R. 1969b. Nematicidal activity of Aspergillus niger culture filtrates. Phytopathology 59: 1170.

    Google Scholar 

  • Martinez, B. 2008. Selection of Trichoderma spp. isolate candidates to biofungicides for the control of Rhizoctonia sp. On rice. Rev. Protección Veg. (online). 23(2): 118–125.

    Google Scholar 

  • Melouk, H. A., and Horner, C. E. 1975. Cross plant disease/January 2008 77 protection in mint by Verticillium nigrescens against V. dahliae. Phytopathology 65: 767–769.

    Google Scholar 

  • Meyer, S. L., Hunttel, R. N., and Sayre, R. M. 1990. Isolation of fungi from Heterodera glycines and in vitro bioassays for their antagonism to eggs. J. Nematol. 22: 221–234.

    Google Scholar 

  • Meyer, S. L. F., Massoud, S. I., Chitwood, D. J., and Roberts, D. P. 2000. Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2: 871–879.

    Google Scholar 

  • Mondal, G. 1998. In vitro evaluation of Aspergillus niger AN 27 against soil borne fungal plant pathogens and field testing against Macrophomina phaseolina on Potato. Ph.D. thesis, pp. 117–XLVIII. New Delhi: I.A.R.I.

    Google Scholar 

  • Mondal, G., and Sen, B. 1999. Fungal metabolites from Aspergillus niger AN 27 related to plant growth promotion. Indian J. Exp. Biol. 38: 84–87.

    Google Scholar 

  • Morgan-Jones, G., White, J. F., and Rodriquez-Kabana, R. 1983. Phytonematode pathology: ultrastructural studies I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica 13: 245–260.

    Google Scholar 

  • Mukhopadhyay, A. N., Shrestha, S. M., and Mukherjee, P. K. 1992. Biological seed treatments for control of soil borne plant pathogens. FAO Plant Prot. Bull. 40(1–2): 21–30.

    Google Scholar 

  • Nair, M. G., and Burke, B. A. 1988. A few fatty acid methyl ester and other biologically active compounds from Aspergillus niger. Phytochemistry 27(10): 3169–3173.

    CAS  Google Scholar 

  • Ngueko, R. B. 2002. Antagonism in vitro of Trichoderma harzianum C184 against the root pathogens of banana and plantain in Cameroon. J. Zhejiang Univ. (Agric. Life Sci.) 28(4): 407–410.

    Google Scholar 

  • Nigam, N., Kumar, R. N., Mukerji, K. G., and Upadhyay, R. K. 1997. Fungi – a tool for biocontrol. In Biocontrol in emerging biotechnology, IPM system in agriculture, Vol. II, eds. R. K. Upadhyay, K. G. Mukerji, and R. L. Rajak, pp. 503–526. New Delhi: Aditya Books Pvt. Ltd.

    Google Scholar 

  • Niu, X., Yan-Li, W., Yan-Sheng, C., Hua-Xi, X., Nan, L., Lu-Xia, W., Ming-He, M., and Ke-Qin, Z. 2010. Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. J. Agric. Food Chem. 58(2): 828–834.

    CAS  Google Scholar 

  • O’Sullivan, D. J., and O’Gara, F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Mol. Biol. Rev. 56: 662–676.

    Google Scholar 

  • Olson, H. A., and Benson, D. M. 2007. Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium. Biol. Control 42(2): 233–241.

    Google Scholar 

  • Omar, M., and Heather, W. A. 1979. Effect of saprophytic phylloplane fungi on germination and development of Melampsora larici-populina. Trans. Br. Mycol. Soc. 72(2): 225–231.

    Google Scholar 

  • Ortu, G., Demontis, M. A., Budroni, M., Goyard, S., d’Enfert, C., and Migheli, Q. 2005. Study of biofilm formation in Candida albicans may help understanding the biocontrol capability of a flor strain of Saccharomyces cerevisiae against the phytopathogenic fungus Penicillium expansum. J. Plant Pathol. 87(4): 267–309.

    Google Scholar 

  • Oyekanmi, E. O., Coyne, D. L., and Fawole, B. 2008. Utilization of the potentials of selected microorganisms as biocontrol and biofertilizer for enhanced crop improvement. J. Biol. Sci. 8: 746–752.

    Google Scholar 

  • Pal, K. K., and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02.

  • Palakshappa, M. G., Kulkarni, S., and Hedge, R. K. 1989. Effect of organic amendments on the survivals ability of Sclerotium rolfsii, a causal agent of foot-rot of betelvine. Mysore J. Agric. Sci. 23(3): 332–336.

    Google Scholar 

  • Pandey, B. K. 1988. Studies on Botrytis grey mold of chickpea (Cicer arietinum L.). Ph.D. thesis. Pantnagar, India: G. B. P. U. Ag. Tech.

    Google Scholar 

  • Pant, H., and Pandey, G. 2001. Efficacy of bio-control agents for the management of root-knot nematode on chickpea. Ann. Plant Prot. Sci. 9(1): 117–170.

    Google Scholar 

  • Pant, H., and Pandey, G. 2002. Use of Trichoderma harzianum and neem cake alone and in combination on Meloidogyne incognita galls in chickpea. Ann. Plant Prot. Sci. 10: 134–178.

    Google Scholar 

  • Papavizas, G. C. 1985. Biological control of soil borne diseases. Summa Phytopathol. 11: 173–179.

    Google Scholar 

  • Papavizas, G. C., and Lewis, J. A. 1989. Effect of Gliocladium and Trichoderma on damping off of snapbean caused by Sclerotium rolfsii in the greenhouse. Plant Pathol. 38: 277–286.

    Google Scholar 

  • Papavizas, G. C., Dunn, M. T., Lewis, J. A., and Beagle-Ristaino, J. 1984. Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74: 1171–1175.

    CAS  Google Scholar 

  • Peighami-Ashnaei, S., Sharifi-Tehrani, A., Ahmadzadeh, M., and Behboudi, K. 2009. Interaction of different media on production and biocontrol efficacy of Pseudomonas fluorescens. J. Plant Pathol. 91(1): 199–202.

    Google Scholar 

  • Persson, Y., Veehuis, M., and Nordbring-Hertz, B. 1985. Morphogenesis and significance of hyphal coiling by nematode-trapping fungi in mycoparasitic relationships. FEMS Microbiol. Ecol. 31: 283–291.

    Google Scholar 

  • Pill, W. G., Collins, C. M., Goldberger, B., and Gregory, N. 2009. Responses of non-primed or primed seeds of ‘Marketmore 76’ cucumber (Cucumis sativus L.) slurry coated with Trichoderma species to planting in growth media infested with Pythium aphanidermatum. Sci. Hortic. 121(1): 54–62.

    Google Scholar 

  • Pocasangre Enamorado, L. E., zum Felde, A., Cañizares, C., Muñoz, J., Suarez, P., Jimenez, C., Riveros, A. S., Rosales, F. E., and Sikora, R. A. 2007. Field evaluation of the antagonistic activity of endophytic fungi towards the burrowing nematode, Radopholus similis, in plantain. In Latin America Pro Musa Symposium, pp. 10–14. White River (ZAF): Greenway Woods Resort.

    Google Scholar 

  • Prasad, R. D., Rangeshwaran, R., Anuroop, C. P., and Rashmi, H. J. 2002. Biological control of wilt and root-rot of chickpea under field condition. Ann. Rev. Plant Prot. Sci. 10(1): 72–75.

    Google Scholar 

  • Prasad, C. S., Gupta, V., Tyagi, A., and Pathak, S. 2003. Biological control of Sclerotium rolfsii, the incidence of cauliflower collar rot. Ann. Plant Prot. Sci. 11:61–63.

    Google Scholar 

  • Radhakrishna, P., and Sen, B. 1986. Efficacy of different methods of inoculation of Fusarium oxysporum and F. solani for inducing wilt in muskmelon. Indian Phytopathol. 38: 70–73.

    Google Scholar 

  • Raijmakers, J. M., der Sluis, I. V., Koster, M., Bakker, P. A. H. M., Weisbeek, P. J., and Schippers, B. 1995. Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can. J. Microbiol. 41: 126–135.

    Google Scholar 

  • Rajendiran, R., Jegadeeshkumar, D., Sureshkumar, B. T., and Nisha, T. 2010. In vitro assessment of antagonistic activity of Trichoderma viride against post harvest pathogens. J. Agric. Technol. 6(1): 31–35.

    Google Scholar 

  • Rao, M. S. 2005. Management of Meloidogyne javanica on acid lime nursery seedlings by using formulations of Pochonia chlamydosporia and Paecilomyces lilacinus [Citrus aurantifolia (Christm. et Panz.) Swingle; India]. Nematol. Mediterr. 33(2): 145–148.

    Google Scholar 

  • Rao, G. V. R., and Gopalakrishnan, S. 2009. Expert consultation on biopesticides and biofertilizers for sustainable agriculture. Proceedings and recommendations, pp. 24. Chinese Taipei, Taichung: Taiwan Agricultural Research Institute.

    Google Scholar 

  • Rao, C. V., and Narayana, Y. D. 2010. Integrated disease management of chickpea (Cicer arietenum L.) blight caused by Colletotrichum dematium. Curr. Biotica 3(4): 575–578.

    Google Scholar 

  • Rekha, A., and Saxena, S. K. 1999. Influence of certain rhizosphere fungi together with Rhizoctonia solani and Meloidogyne incognita on germination of ‘Pusa Ruby’ tomato seeds. Indian Phytopathol. 52(2): 121–126.

    Google Scholar 

  • Reyes, M. E. Q., Rohrbach, K. G., and Paul, R. E. 2004. Microbial antagonists control post harvest black rot of pineapple fruit. Postharvest Biol. Technol. 33: 193–203.

    CAS  Google Scholar 

  • Riad, S. R. E., Ziedan, E. H., and Abdalla, A. M. 2010. Biological soil treatment with Trichoderma harzianum to control root rot disease of grapevine (Vitis vinifera L.) in newly reclaimed lands in Nobaria province. Arch. Phytopathol. Plant Prot. 43(1): 73–87.

    Google Scholar 

  • Robinson, P. M., and Park, D. 1966. Volatile inhibitors of spore germination produced by fungi. Trans. Br. Mycol. Soc. 49: 639–649.

    CAS  Google Scholar 

  • Saifullah. 1996b. Killing potato cyst nematode males, a possible control strategy. Afro Asian J. Nematol. 6: 23–28.

    Google Scholar 

  • Saifullah. 1996c. Nematicidal and nematostatic effect of cell free culture filtrates of Verticillium chlamydosporium Goddard in vitro. Afro Asian J. Nematol. 6(1): 32–35.

    Google Scholar 

  • Saifullah. 1996a. Fungal parasitism of young females of Globodera rostochiensisand G. pallida. Afro Asian J. Nematol. 6: 17–22.

    Google Scholar 

  • Sant, D., Casanova, E., Segarra, G., Aviles, M., Reis, M., and Trillas, M. I. 2010. Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium, Biological Control, in press, available on line, January 2010, doi:10.1016/j.biocontrol.2010.01.012.

  • Santamarina, M. P., and Rosello, J. 2006. Influence of temperature and water activity on the antagonism of Trichoderma harzianum to Verticillium and Rhizoctonia. Crop Prot. 25(10): 1130–1134.

    Google Scholar 

  • Schenek, C. 2004. Control of nematodes in tomato with Paecilomyces lilacinus. Hawaii Agriculture Research Center Vegetable Report 5.

    Google Scholar 

  • Scher, F. M., and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness of Fusarium wilt pathogens. Phytopathology 72: 1567–1573.

    CAS  Google Scholar 

  • Segers, R., Butt, T. M., Kerry, B. R., and Peberdy, J. F. 1994. The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase like protease which hydrolyses host nematode proteins in situ. Microbiology 140: 2715–2723.

    CAS  Google Scholar 

  • Segers, R., Butt, T. M., Carder, J. H., Keen, J. N., and Kerry, B. R. 1999. The subtilins of fungal pathogens of insects nematodes and plants: distribution and variation. Mycol. Res. 103: 395–402.

    CAS  Google Scholar 

  • Sen, B. 1997. Consultation on the application of biotechnology in plant pest management, FAO, RAP Publication 40, pp. 276–278. New Delhi: IARI.

    Google Scholar 

  • Sen, B. 2000. Biocontrol: a success story. Indian Phytopathol. 53(3): 243–249.

    Google Scholar 

  • Sen, B., Mukherjee, K., Chattopadhyay, C., Patibanda, A. K., and Sharma, J. 1995. Aspergillus niger, a potential biocontrol agent for soil-borne plant pathogens. Proceedings of the Global Conference on Advances in Research on Plant Conference and Their Management. Society of Mycology and Plant Pathology, p. 161 XI 29. Udaipur: Rajasthan Agricultural University.

    Google Scholar 

  • Sen, B., Kumar, S., and Majunder, S. 1997. Fifty years towards biological control of Fusarial wilts in India. In Plant pathology – fifty years of research in India, eds. J. P. Verma and A. Verma, pp. 675–688. New Delhi: Malhotra Publishing House.

    Google Scholar 

  • Sesan, T., Oprea, M., Podosu, C. A., Tica, C., Oancea, F. 1999. Biocontrol of Botrytis cinerea on grapevine with Trichoderma spp. and Saccharomyces chevalieri. Bull. Pol. Acad. Sci. Biol. Sci. 47(2–4): 197–205.

    Google Scholar 

  • Shah, N. H., Khan, M. I., and Azam, M. F. 1994. Studies on the individual and concomitant effect of Aspergillus niger, rhizoctonia solonia, and M. javanica on plant growth and nematode reproduction on chilli (Capsicum annuum L). Ann. Plant Prot. Sci. 1(2): 75–78.

    Google Scholar 

  • Shahida, P., and Gaffar, A. 1991. Effect of microbial antagonists in the control of root-rot of tomato. Pak. J. Bot. 23(2): 179–182.

    Google Scholar 

  • Sharma, J., and Sen, B. 1991a. Antagonistic potentials of soil and dung isolates of Aspergillus spp. Against Fusarium solani (Mart) Sacc. Causing wilt of Curbits. Indian J. Microbiol. Geol. 2: 91–97.

    Google Scholar 

  • Sharma, J., and Sen, B. 1991b. Interaction of soil microflora with cucurbit with pathogen, Fusarium solani. Indian Phytopathol. 44: 94–96.

    Google Scholar 

  • Sharma, H. K., Prasad, D., and Sharma, P. 2005. Compatibility of fungal bioagents as seed dressers with carbofuran in okra against Meloidogyne incognita. National Symposium on Recent Advances and Research Priorities in Indian Nematology, pp. 9–11.

    Google Scholar 

  • Sharon, E., Chet, I., and Spiegel, Y. 2009. Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. Eur. J. Plant Pathol. 123: 291–299.

    CAS  Google Scholar 

  • Siddiqui, Z. A., and Mahmood, I. 1996. Biological control of Heterodera cajani and Fusarium udum on pigeonpea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium. Isr. J. Plant Sci. 44: 49–56.

    Google Scholar 

  • Siddiqui, I. A., and Shaukat, S. S. 2004. Trichoderma harzianum enhances the production of biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett. Appl. Microbiol. 38(2): 169–175.

    CAS  Google Scholar 

  • Siddiqui, I. A., Atkins, S. D., and Kerry, B. R. 2009. Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. Ann. Appl. Biol. 155(1): 131–141

    Google Scholar 

  • Singh, R. S. 2008. Plant diseases. New Delhi: Oxford and IBH.

    Google Scholar 

  • Singh, A., and Singh, H. B. 2004. Control of collar rot in mint (Mentha spp.) caused by Sclerotium rolfsii using biological means. Curr. Sci. 87(3): 362–366.

    Google Scholar 

  • Singh, S. M., Azam, M. F., Khan, A. M., and Saxena, S. K. 1991. Effect of Aspergillus niger and Rhizoctonia solani on development of Meloidogyne incognita on tomato. Curr. Nematol. 2: 163–166.

    Google Scholar 

  • Singh, S. K., Singh, R. H., and Dutta, S. 2002. Integrated management of pigeon pea wilt by biotic agents and biopesticides. Ann. Plant Prot. Sci. 10: 388–389.

    Google Scholar 

  • Singh, H. B., Singh, A., and Nautiyal, C. S. 2003. Commercializing of biocontrol agents: problems and prospects. In Frontiers of fungal biodiversity in India, eds. G. P. Rao, C. Manoharachaty, D. J. Bhat, R. C. Rajak, and T. N. Lakhanpal, pp. 847–861. Lucknow: International Book Distributing Co.

    Google Scholar 

  • Singh, R., Parameswaran, T. N., Prakasa Rao, E. V. S., Puttanna, K., Kalra, A., Srinivas, K. V. N. S., Bagyaraj, D. J., and Divya, S. 2009. Effect of arbuscular mycorrhizal fungi and Pseudomonas fluorescens on root-rot and wilt, growth and yield of Coleus forskohlii. Biocontrol Sci. Technol. 19(8): 835–841.

    Google Scholar 

  • Sitaramaiah, K., and Pathak, K. N. 1993. Nematode bacterial disease interaction. In Nematode interactions, ed. M. W. Khan, pp. 232–250. New York: Chapman and Hall.

    Google Scholar 

  • Sivan, A., and Chet, T. 1989. Biological control effects of a new isolate of Trichoderma harzianum on Pythium aphanidermatum. Phytopathology 74: 498.

    Google Scholar 

  • Srivastava, D. N., and Rao, Y. P. 1966. Symptoms and diagnosis of bacterial blight of rice. Curr. Sci. 35: 60.

    Google Scholar 

  • Stalkman, E. C., and Harrar, J. G. 1957. Principles of plant pathology. New York: Ronald Press.

    Google Scholar 

  • Stirling, G. R. 1991. Biochemical control of plant parasitic nematodes: progress, problems and prospects. Wallingford, UK: CAB International.

    Google Scholar 

  • Stirling, G. R. 1993. Biocontrol of plantpathogenic nematode and fungus. Phytopathology 83: 1525–1532.

    Google Scholar 

  • Suarez, B., Rey, M., Castillo, P., Monte, E., and Llobell, A. 2004. Isolation and characterization of PRA1, a trypsin like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biotechnol. 65: 46–55.

    CAS  Google Scholar 

  • Saifullah and Thomas, B. J. 1997. Parasitism of Globodera rostochiensis by Verticillium chlamydosporium low temperature scanning electron microscopy and freeze fracture study. Int. J. Nematol. 7: 30–34.

    Google Scholar 

  • Tjamos, E. C., Papavizas, G. C., and Cook, R. J. 1992. Biological control of plant diseases, progress and challenges for the future. New York: Plenum Press.

    Google Scholar 

  • Toohey, J. I., Netson, C. D., and Krotkov, G. 1965. Isolation and identification of two phenazines from a strain of Pseudomonas aureofaciens. Can. J. Bot. 43: 1055–1062.

    CAS  Google Scholar 

  • Tronsmo, A. 1986. Use of Trichoderma spp. in biological control of necrotrophic pathogens. In Microbiology of the phyllosphere, eds. N. J. Fokkema and Heuvel J. van den, pp. 348–362. Cambridge: Cambridge University Press.

    Google Scholar 

  • Upadhyay, J. P., and Mukhopadhyay, A. N. 1986. Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugar beet. Trop. Pest. Manage. 32: 215–220.

    Google Scholar 

  • van Tuyl, J. M. 1977. Genetics of fungal resistance to systemic fungicides, WAU dissertation no. 679. Wageningen: Wageningen University.

    Google Scholar 

  • Verma, J. P. 1995. Advances in bacterial blight of cotton. Indian Phytopathol. 48: 1.

    Google Scholar 

  • Verma, R. K., and Shekhawat, G. S. 1991. Effect of crop rotation and chemical soil treatment on bacterial wilt of potato. Indian Phytopathol. 44: 5.

    CAS  Google Scholar 

  • Vey, A., Hoagland, R. E., and Butt, T. M. 2001. Toxic metabolites of fungal biocontrol agent. In Fungi as biocontrol agents: progress, problems and potential, eds. T. M. Butt, C. Jackson, and N. Magan, pp. 311–346. Bristol: CAB International.

    Google Scholar 

  • Vyas, S. C., and Vyas, S. 1995. Integrated control of dry root of soybean. In Modern fungicides and antifungal compounds, eds. H. Lyr, P. E. Russel, and H. D. Sisler, pp. 562–572. Andover: Intercept.

    Google Scholar 

  • Wallace, E. R., Ainsworth, G. C., Croxall, H. E., and Hickman, C. J. 1950. Definition of some terms used in plant pathology. Trans. Br. Mycol. Soc. 33: 154–160.

    Google Scholar 

  • Ward, M. H. 1896. Diseases in plants. London: Society for Promoting Christian Knowledge.

    Google Scholar 

  • Wijesinghe, C., Wilson, W. R. S., Samarasekara, J. K. R. R., and Wijesundera, R. L. C. 2009. Antagonistic effect of Trichoderma harzianum on Thielaviopsis paradoxa – the pineapple black rot pathogen. Newslett. Pineapple Working Group Int. Soc. Hortic. Sci. 16: 28–32.

    Google Scholar 

  • Wilhelm, S., and Tietz, H. 1978. Julius Kuehn – his concept of plant pathology. Annu. Rev. Phytopathol. 16: 343–358.

    Google Scholar 

  • Windham, G. I., Windham, M. T., and Williams, W. P. 1989. Effects of Trichoderma spp. on maize growth and Meloidogyne arenaria reproduction. Plant Dis. 73: 493–496.

    Google Scholar 

  • Wraight, S. P., and Carruthers, R. I. 1999. Production, delivery and use of mycoinsecticides for control of insect pests on field crops. In Biopesticides: use and delivery, eds. F. R. Hall and J. J. Menn, pp. 233–270. Totowa, NJ: Humana Press.

    Google Scholar 

  • Xu, T., and Qin, H. T. 2000. The potential use of Trichoderma harzianum strains for the protection of rice against sheath blight. Hong Kong: Asian Mycological Congress.

    Google Scholar 

  • Yuh-Shan, H. 2005. Comment on ‘Biosorption of cadmium using the fungus Aspergillus niger’ by Barros, L. M., Macedo, G. R., Duarte, M. M. L., Silva, E. P., and Lobato, A. K. C. L. Braz. J. Chem. Eng. 22(2): 319–322.

    Google Scholar 

  • Zamani, M., Tehrani, A. S., Ahmadzadeh, M., and Abadi, A. A. 2006. Effect of fluorescent pseudomonades and Trichoderma sp. and their combination with two chemicals on Penicillium digitatum caused agent of citrus green mold. Commun. Agric. Appl. Biol. Sci. 71(3): 1301–1310.

    CAS  Google Scholar 

  • Zareen, A., Khan, N. J., and Zaki, M. J. 2001. Biological control of Meloidogyne javanica (Treub) Chitwood, root knot nematodes of Okra [Abelmoschus esculentus (L) Moench]. Pak. J. Biol. Sci. 4: 990–994.

    Google Scholar 

  • Zum Felde, A., Pocasangre, L. E., Carnizares Monteros, C. A., Sikora, R. A., Rosales, F. E., and Riveros, A. S. 2006. Effect of combined inoculations of endophytic fungi on the biocontrol of Radopholus similis. Info Musa 15(1–2): 12–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujeebur Rahman Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khan, M.R., Anwer, M.A. (2011). Fungal Bioinoculants for Plant Disease Management. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_17

Download citation

Publish with us

Policies and ethics