Skip to main content

Advertisement

Log in

A Highly Efficient Method for Construction of Rice Artificial MicroRNA Vectors

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Artificial microRNA (amiRNA) has become a powerful tool for gene silencing in plants. A new method for easy and rapid construction of rice artificial miRNA vector is described. The procedure involved modification of the pCAMBIA1300-UR vector by insertion of a ‘vector modification fragment’. This was prepared from the precursor of Os-amiR528 by eliminating the central miRNA-containing region while simultaneously creating an AfeI restriction site. The fragment was then introduced to the destination vector to produce a multipurpose ‘Highly Efficient gene Silencing Compatible vector’ (HESC vector). AfeI was used to produce linearized HESC vectors, and a blunt end PCR product that included amiRNA sequence was cloned into this site by a single ligation reaction to create the completed amiRNA vector. Tests showed that the method was highly efficient, and greatly reduced the time needed for vector construction and resulted in a DNA sequence identical to that of the current method, making it particularly suitable for use in a systems biology approach to functional genomic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    Article  CAS  Google Scholar 

  2. Ruvkun, G. (2001). Molecular biology. Glimpses of a tiny RNA world. Science, 294, 797–799.

    Article  CAS  Google Scholar 

  3. Moxon, S., Jing, R., Szittya, G., Schwach, F., Rusholme Pilcher, R. L., Moulton, V., et al. (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research, 18, 1602–1609.

    Article  CAS  Google Scholar 

  4. Vaucheret, H., Vazquez, F., Crete, P., & Bartel, D. P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes and Development, 18, 1187–1197.

    Article  CAS  Google Scholar 

  5. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., et al. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology, 24, 1420–1428.

    Article  CAS  Google Scholar 

  6. Parizotto, E. A., Dunoyer, P., Rahm, N., Himber, C., & Voinnet, O. (2004). In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes and Development, 18, 2237–2242.

    Article  CAS  Google Scholar 

  7. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18, 1121–1133.

    Article  CAS  Google Scholar 

  8. Warthmann, N., Chen, H., Ossowski, S., Weigel, D., & Herve, P. (2008). Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE, 3, e1829.

    Article  Google Scholar 

  9. Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., Lim, L. P., et al. (2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 310, 1817–1821.

    Article  CAS  Google Scholar 

  10. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  CAS  Google Scholar 

  11. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773.

    Article  CAS  Google Scholar 

  12. Llave, C., Kasschau, K. D., Rector, M. A., & Carrington, J. C. (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14, 1605–1619.

    Article  CAS  Google Scholar 

  13. Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., & Weigel, D. (2005). Specific effects of microRNAs on the plant transcriptome. Developmental Cell, 8, 517–527.

    Article  CAS  Google Scholar 

  14. Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., et al. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science, 320, 1185–1190.

    Article  CAS  Google Scholar 

  15. Dennis, E. S., Ellis, J., Green, A., Llewellyn, D., Morell, M., Tabe, L., et al. (2008). Genetic contributions to agricultural sustainability. Philosophical Transactions of the Royal Society of London B Biological Sciences, 363, 591–609.

    Article  CAS  Google Scholar 

  16. Lu, Y. D., Gan, Q. H., Chi, X. Y., & Qin, S. (2008). Roles of microRNA in plant defense and virus offense interaction. Plant Cell Reports, 27, 1571–1579.

    Article  CAS  Google Scholar 

  17. Sandhu, G. S., Aleff, R. A., & Kline, B. C. (1992). Dual asymmetric PCR: One-step construction of synthetic genes. BioTechniques, 12, 14–16.

    CAS  Google Scholar 

  18. Mehta, R. K., & Singh, J. (1999). Bridge-overlap-extension PCR method for constructing chimeric genes. BioTechniques, 26, 1082–1086.

    CAS  Google Scholar 

  19. Young, L., & Dong, Q. (2004). Two-step total gene synthesis method. Nucleic Acids Research, 32, e59.

    Article  Google Scholar 

  20. Sambrook, J., & Russell, D. W. (2006). The Inoue method for preparation and transformation of competent E. coli: “Ultra-competent” cells. Cold Spring Harbor Protocols, 2006, 3944.

    Google Scholar 

  21. Hiei, Y., Ohta, S., Komari, T., & Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal, 6, 271.

    Article  CAS  Google Scholar 

  22. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  Google Scholar 

  23. Christensen, A. H., & Quail, P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5, 213–218.

    Article  CAS  Google Scholar 

  24. Coruzzi, G., Broglie, R., Edwards, C., & Chua, N. H. (1984). Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1, 5-bisphosphate carboxylase. EMBO Journal, 3, 1671–1679.

    CAS  Google Scholar 

  25. Liu, C., Zhang, L., Sun, J., Luo, Y., Wang, M. B., Fan, Y. L., et al. (2010). A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Molecular Biology Reports, 37, 903–909.

    Article  CAS  Google Scholar 

  26. Boyd, A. C. (1993). Turbo cloning: A fast, efficient method for cloning PCR products and other blunt-ended DNA fragments into plasmids. Nucleic Acids Research, 21, 817–821.

    Article  CAS  Google Scholar 

  27. Lu, Y., Savage, L. J., Ajjawi, I., Imre, K. M., Yoder, D. W., Benning, C., et al. (2008). New connections across pathways and cellular processes: Industrialized mutant screening reveals novel associations between diverse phenotypes in Arabidopsis. Plant Physiology, 146, 1482–1500.

    Article  CAS  Google Scholar 

  28. Zhang, Q., Li, J., Xue, Y., Han, B., & Deng, X. W. (2008). Rice 2020: A call for an international coordinated effort in rice functional genomics. Molecular Plant, 1, 715–719.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CAMBIA (Canberra, Australia) for supplying the binary vector pCAMBIA1300. We also thank Professor Mike Adams for his help in English modification of the manuscript. This work was supported by the Program of New Varieties of Genetically Modified Organism Cultivation of China [2009ZX08009-043B, 2009ZX08001-006B]; ‘863’ Program, [2008AA02Z125]; the Zhejiang Provincial Foundation for Natural Science [Z307451]; and special grant from the Zhejiang Provincial Department of Science and Technology [2007C12039].

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Chen.

Additional information

Vectors mentioned in this work can be requested from Jianping Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, Y., Yu, C. et al. A Highly Efficient Method for Construction of Rice Artificial MicroRNA Vectors. Mol Biotechnol 46, 211–218 (2010). https://doi.org/10.1007/s12033-010-9291-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9291-4

Keywords

Navigation