Skip to main content

Challenges in Bioethanol Production: Effect of Inhibitory Compounds

  • Chapter
  • First Online:
Bioenergy Research: Basic and Advanced Concepts

Abstract

In today’s world, the need for sustainable fuel production is increased. For the production of cost-effective fuels for many purposes, the concern has shifted toward the use of biomass, including plants. The use of biomass for bioethanol production has proved beneficial in terms of cost, of production, but the main challenges encountered are of the production of inhibitors. Production of bioethanol from biomass involves first, second, and third generations of feedstock. The pretreatment of second-generation biomass, i.e., lignocelluloses, results in the formation of inhibitory byproducts. The inhibitors include furans, weak acids, and phenolic compounds. These inhibitors result in the increase of cost for the whole processing. This review is focused on process, the compounds that have inhibitory role and are extracted from biomass rich in lignocelluloses in the duration of pretreatment, their mechanism of action, and how to minimize their effects on fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham A, Mathew AK, Park H, Choi O, Sindhu R, Parameswaran B, Pandey A, Park JH, Sang B-I (2020) Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour Technol 301:122725

    Article  CAS  Google Scholar 

  • Adeboye PT, Bettiga M, Aldaeus F, Larsson PT, Olsson L (2015) Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microb Cell Fact 14(1):149

    Article  CAS  Google Scholar 

  • Agarwal B, Ahluwalia V, Pandey A, Sangwan RS, Elumalai S (2017) Sustainable production of chemicals and energy fuel precursors from lignocellulosic fractions. In: Biofuels. Springer, Singapore, pp 7–33

    Chapter  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  Google Scholar 

  • Alizadeh H, Teymouri F, Gilbert TI, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 124(1–3):1133–1141

    Article  Google Scholar 

  • Almario MP, Reyes LH, Kao KC (2013) Evolutionary engineering of saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnology and bioengineering. 110(10):2616–2623

    Article  CAS  Google Scholar 

  • Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349

    Article  CAS  Google Scholar 

  • Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098

    Article  CAS  Google Scholar 

  • Alriksson B, Cavka A, Jönsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102(2):1254–1263

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  • An Y-X, Zong M-H, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171

    Article  CAS  Google Scholar 

  • Arora A, Priya S, Sharma P, Sharma S, Nain L (2016) Evaluating biological pretreatment as a feasible methodology for ethanol production from paddy straw. Biocatal Agric Biotechnol 8:66–72

    Article  Google Scholar 

  • Arora A, Nandal P, Singh J, Verma ML (2020) Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Mater Sci Energy Technol 3:308–318

    CAS  Google Scholar 

  • Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61

    Google Scholar 

  • Barakat A, Mayer-Laigle C, Solhy A, Arancon RA, De Vries H, Luque R (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RSC Adv 4(89):48109–48127

    Article  CAS  Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106

    Article  CAS  Google Scholar 

  • Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745

    Article  CAS  Google Scholar 

  • Bitra VS, Womac AR, Igathinathane C, Miu PI, Yang YT, Smith DR, Chevanan N, Sokhansanj S (2009) Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover. Bioresour Technol 100(24):6578–6585

    Article  CAS  Google Scholar 

  • Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6(9):1086–1102

    Article  CAS  Google Scholar 

  • Boussaid A-L, Esteghlalian AR, Gregg DJ, Lee KH, Saddler JN (2000) Twenty-first symposium on biotechnology for fuels and chemicals. Humana Press, Totowa

    Google Scholar 

  • Brandt BA, Jansen T, Görgens JF, van Zyl WH (2019) Overcoming lignocellulose-derived microbial inhibitors: advancing the Saccharomyces cerevisiae resistance toolbox. Biofuels Bioprod Biorefin 13(6):1520–1536

    Article  CAS  Google Scholar 

  • Cannella D, Sveding PV, Jørgensen H (2014) PEI detoxification of pretreated spruce for high solids ethanol fermentation. Appl Energy 132:394–403

    Article  CAS  Google Scholar 

  • Cao X, Peng X, Sun S, Zhong L, Sun R (2014a) Hydrothermal conversion of bamboo: Identification and distribution of the components in solid residue, water-soluble and acetone-soluble fractions. J Agric Food Chem 62(51):12360–12365

    Article  CAS  Google Scholar 

  • Cao X, Peng X, Sun S, Zhong L, Wang S, Lu F, Sun R (2014b) Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydr Polym 111:400–403

    Article  CAS  Google Scholar 

  • Cao G, Ximenes E, Nichols NN, Frazer SE, Kim D, Cotta MA, Ladisch M (2015) Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors. Bioresour Technol 190:412–415

    Article  CAS  Google Scholar 

  • Chandel A, Da Silva SS (2013) Sustainable degradation of lignocellulosic biomass: techniques, applications and commercialization. InTech, Rijeka

    Book  Google Scholar 

  • Chandel AK, Gonçalves BC, Strap JL, da Silva SS (2015) Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol 35(3):281–293

    Article  CAS  Google Scholar 

  • Chandra RP, Arantes V, Saddler J (2015) Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose. Bioresour Technol 185:302–307

    Article  CAS  Google Scholar 

  • Chen H, Han Y, Xu J (2008) Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem 43(12):1462–1466

    Article  CAS  Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206

    Article  CAS  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36(12):3541–3549

    Article  CAS  Google Scholar 

  • Cheng K-K, Cai B-Y, Zhang J-A, Ling H-Z, Zhou Y-J, Ge J-P, Xu J-M (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38(1):105–109

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Conver Manage 51(7):1412–1421

    Article  CAS  Google Scholar 

  • Chundawat SP, Pal RK, Zhao C, Campbell T, Teymouri F, Videto J, Nielson C, Wieferich B, Sousa L, Dale BE (2020) Ammonia fiber expansion (AFEX) pretreatment of lignocellulosic biomass. J Vis Exp 18:158

    Google Scholar 

  • Ciesielski PN, Resch MG, Hewetson B, Killgore JP, Curtin A, Anderson N, Chiaramonti AN, Hurley DC, Sanders A, Himmel ME (2014) Engineering plant cell walls: tuning lignin monomer composition for deconstructable biofuel feedstocks or resilient biomaterials. Green Chem 16(5):2627–2635

    Article  CAS  Google Scholar 

  • Cola P, Procópio DP, de Castro Alves AT, Carnevalli LR, Sampaio IV, da Costa BLV, Basso TO (2020) Differential effects of major inhibitory compounds from sugarcane-based lignocellulosic hydrolysates on the physiology of yeast strains and lactic acid bacteria. Biotechnol Lett 42(4):571–582

    Article  CAS  Google Scholar 

  • Crigler J, Eiteman MA, Altman E (2020) Characterization of the furfural and 5-hydroxymethylfurfural (HMF) metabolic pathway in the novel isolate Pseudomonas putida ALS1267. Appl Biochem Biotechnol 190(3):918–930

    Article  CAS  Google Scholar 

  • Cuevas M, García JF, Sánchez S (2014) Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production. Carbohydr Polym 99:791–799

    Article  CAS  Google Scholar 

  • Da Silva TL, Santo R, Reis A, Passarinho PC (2017) Effect of furfural on Saccharomyces carlsbergensis growth, physiology and ethanol production. Appl Biochem Biotechnol 182(2):708–720

    Article  CAS  Google Scholar 

  • De Bari I, Nanna F, Braccio G (2007) SO2-catalyzed steam fractionation of aspen chips for bioethanol production: optimization of the catalyst impregnation. Industr Eng Chem Res 46(23):7711–7720

    Article  CAS  Google Scholar 

  • De Klerk C, Fosso-Kankeu E, Du Plessis L, Marx S (2018) Assessment of the viability of Saccharomyces cerevisiae in response to synergetic inhibition during bioethanol production. Curr Sci 115(6):00113891

    Article  CAS  Google Scholar 

  • Dechman J, Foody B (2020) Pretreatment of lignocellulosic biomass with sulfur dioxide and/or sulfurous acid. Google Patents

    Google Scholar 

  • Deshavath NN, Mohan M, Veeranki VD, Goud VV, Pinnamaneni SR, Benarjee T (2017) Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. 3 Biotech 7(2):139

    Article  Google Scholar 

  • Dey SK, Dey S, Das A (2013) Comminution features in an impact hammer mill. Powder Technol 235:914–920

    Article  CAS  Google Scholar 

  • dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2019) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37(5):518–531

    Article  CAS  Google Scholar 

  • Duque SH, Cardona CA, Moncada J (2015) Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy Fuel 29(2):775–783

    Article  CAS  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31(3):353–364

    Article  CAS  Google Scholar 

  • Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97(6):1460–1469

    Article  CAS  Google Scholar 

  • Favaro L, Basaglia M, Trento A, Van Rensburg E, García-Aparicio M, Van Zyl WH, Casella S (2013) Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnol Biofuels 6(1):1–14

    Article  CAS  Google Scholar 

  • Favaro L, Jansen T, van Zyl WH (2019) Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Crit Rev Biotechnol 39(6):800–816

    Article  Google Scholar 

  • Fletcher E, Gao K, Mercurio K, Ali M, Baetz K (2019) Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metab Eng 52:98–109

    Article  CAS  Google Scholar 

  • Fosso-Kankeu E, Marx S, Meyer A (2015) Simulated inhibitory effects of typical byproducts of biomass pretreatment process on the viability of Saccharomyces cerevisiae and bioethanol production yield. Afr J Biotechnol 14(30):2383–2394

    Article  Google Scholar 

  • Fu S, Hu J, Liu H (2014) Inhibitory effects of biomass degradation products on ethanol fermentation and a strategy to overcome them. BioResources 9(3):4323–4335

    Article  Google Scholar 

  • George A, Brandt A, Tran K, Zahari SMNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17(3):1728–1734

    Article  CAS  Google Scholar 

  • Greetham D, Zaky AS, Du C (2019) Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production. Sustain Energy Fuels 3(6):1545–1553

    Article  CAS  Google Scholar 

  • Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT (2015) A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis. Bioresour Technol 182:258–266

    Article  CAS  Google Scholar 

  • Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen UR-Food & Biobased Research, Wageningen

    Google Scholar 

  • Hasunuma T, Ismail KSK, Nambu Y, Kondo A (2014) Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng 117(2):165–169

    Article  CAS  Google Scholar 

  • Hawkins GM, Doran-Peterson J (2011) A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol Biofuels 4(1):49

    Article  CAS  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JA (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12(10):409–415

    Article  CAS  Google Scholar 

  • Horn SJ, Nguyen QD, Westereng B, Nilsen PJ, Eijsink VG (2011) Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass Bioenergy 35(12):4879–4886

    Article  CAS  Google Scholar 

  • Horváth IS, Taherzadeh MJ, Niklasson C, Lidén G (2001) Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnol Bioeng 75(5):540–549

    Article  Google Scholar 

  • Hou J, Tang J, Chen J, Zhang Q (2019) Quantitative structure-toxicity relationship analysis of combined toxic effects of lignocellulose-derived inhibitors on bioethanol production. Bioresour Technol 289:121724

    Article  CAS  Google Scholar 

  • Hsu T-A (1996) Pretreatment of biomass. In: Handbook on bioethanol, production and utilization. CRC Press, Boca Raton, pp 179–212

    Google Scholar 

  • Hu G, Heitmann JA, Rojas OJ (2008) Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. BioResources 3(1):270–294

    Google Scholar 

  • Ingle AP, Chandel AK, Antunes FA, Rai M, da Silva SS (2019) New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofuels Bioprod Biorefin 13(3):776–788

    Article  CAS  Google Scholar 

  • Ito S, Sakai K, Gamaleev V, Ito M, Hori M, Kato M, Shimizu M (2020) Oxygen radical based on non-thermal atmospheric pressure plasma alleviates lignin-derived phenolic toxicity in yeast. Biotechnol Biofuels 13(1):1–13

    Article  CAS  Google Scholar 

  • Jacobsen SE, Wyman CE (eds) (2000) Twenty-first symposium on biotechnology for fuels and chemicals. Humana Press, Totowa

    Google Scholar 

  • Jędrzejczyk M, Soszka E, Czapnik M, Ruppert AM, Grams J (2019) Physical and chemical pretreatment of lignocellulosic biomass. In: Second and third generation of feedstocks. Elsevier, Amsterdam, pp 143–196

    Chapter  Google Scholar 

  • Ji G, Gao C, Xiao W, Han L (2016) Mechanical fragmentation of corncob at different plant scales: impact and mechanism on microstructure features and enzymatic hydrolysis. Bioresour Technol 205:159–165

    Article  CAS  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  CAS  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16

    Article  CAS  Google Scholar 

  • Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renew Sustain Energy Rev 94:340–362

    Article  CAS  Google Scholar 

  • Kim D (2018) Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: a mini review. Molecules 23(2):309

    Article  CAS  Google Scholar 

  • Kim D-E, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Industr Eng Chem Res 49(23):12156–12163

    Article  CAS  Google Scholar 

  • Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48(4–5):408–415

    Article  CAS  Google Scholar 

  • Kim Y, Kreke T, Hendrickson R, Parenti J, Ladisch MR (2013) Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood. Bioresour Technol 135:30–38

    Article  CAS  Google Scholar 

  • Kim Y, Kreke T, Ko JK, Ladisch MR (2015) Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnol Bioeng 112(4):677–687

    Article  CAS  Google Scholar 

  • Kim D, Ximenes EA, Nichols NN, Cao G, Frazer SE, Ladisch MR (2016) Maleic acid treatment of biologically detoxified corn stover liquor. Bioresour Technol 216:437–445

    Article  CAS  Google Scholar 

  • Klinke HB, Thomsen A, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  Google Scholar 

  • Ko JK, Kim Y, Ximenes E, Ladisch MR (2015) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112(2):252–262

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industr Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK, Kumar J, Ahluwalia V (2019) A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour Technol 299:122633

    Article  CAS  Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew Sustain Energy Rev 90:877–891

    Article  CAS  Google Scholar 

  • Ladeira-Ázar RI, Morgan T, Maitan-Alfenas GP, Guimarães VM (2019) Inhibitors compounds on sugarcane bagasse saccharification: effects of pretreatment methods and alternatives to decrease inhibition. Appl Biochem Biotechnol 188(1):29–42

    Article  CAS  Google Scholar 

  • Lee JW, Kim JY, Jang HM, Lee MW, Park JM (2015) Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization. Bioresour Technol 182:296–301

    Article  CAS  Google Scholar 

  • Li Q, Jiang X, He Y, Li L, Xian M, Yang J (2010) Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl Microbiol Biotechnol 87(1):117–126

    Article  CAS  Google Scholar 

  • Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catalysis 6(11):7621–7640

    Article  CAS  Google Scholar 

  • Lima MA, Gomez LD, Steele-King CG, Simister R, Bernardinelli OD, Carvalho MA, Rezende CA, Labate CA, Rd E, McQueen-Mason SJ (2014) Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnol Biofuels 7(1):10

    Article  CAS  Google Scholar 

  • Liu ZL, Blaschek HP (2010) Biomass conversion inhibitors and in situ detoxification. In: Biomass to biofuels: strategies for global industries. Wiley, Hoboken, pp 233–259

    Chapter  Google Scholar 

  • Liu S, Dien BS, Cotta MA (2005) Functional expression of bacterial Zymobacter palmae pyruvate decarboxylase gene in Lactococcus lactis. Curr Microbiol 50(6):324–328

    Article  CAS  Google Scholar 

  • Liu J, Du C, Beaman HT, Monroe MBB (2020) Characterization of phenolic acid antimicrobial and antioxidant structure–property relationships. Pharmaceutics 12(5):419

    Article  CAS  Google Scholar 

  • Lu X, Zhang Y, Angelidaki I (2009) Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresour Technol 100(12):3048–3053

    Article  CAS  Google Scholar 

  • Lyra Colombi B, Silva Zanoni PR, Benathar Ballod Tavares L (2018) Effect of phenolic compounds on bioconversion of glucose to ethanol by yeast Saccharomyces cerevisiae PE-2. Can J Chem Eng 96(7):1444–1450

    Article  CAS  Google Scholar 

  • Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101(24):9600–9604

    Article  CAS  Google Scholar 

  • Machineni L (2019) Lignocellulosic biofuel production: review of alternatives. Biomass Convers Biorefin 10:1–13

    Google Scholar 

  • Madadi M, Tu Y, Abbas A (2017a) Pretreatment of lignocelollusic biomass based on improving enzymatic hydrolysis. Int J Appl Sci Biotechnol 5(1):1–11

    Article  CAS  Google Scholar 

  • Madadi M, Tu Y, Abbas A (2017b) Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol 13(2):135–143

    Google Scholar 

  • Malav MK, Prasad S, Kharia SK, Kumar S, Sheetal K, Kannojiya S (2017) Furfural and 5-HMF: potent fermentation inhibitors and their removal techniques. Int J Curr Microbiol App Sci 6(3):2060–2066

    Article  CAS  Google Scholar 

  • Martín C, Galbe M, Nilvebrant N-O, Jönsson LJ (2002) Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. In: Biotechnology for fuels and chemicals. Springer, pp 699–716

    Google Scholar 

  • Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb Technol 40(3):426–432

    Article  CAS  Google Scholar 

  • Martín C, García A, Schreiber A, Puls J, Saake B (2015) Combination of water extraction with dilute-sulphuric acid pretreatment for enhancing the enzymatic hydrolysis of Jatropha curcas shells. Ind Crop Prod 64:233–241

    Article  CAS  Google Scholar 

  • Menegazzo F, Ghedini E, Signoretto M (2018) 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23(9):2201

    Article  CAS  Google Scholar 

  • Michalska K, Miazek K, Krzystek L, Ledakowicz S (2012) Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol 119:72–78

    Article  CAS  Google Scholar 

  • Miura T, Lee S-H, Inoue S, Endo T (2012) Improvement of enzymatic saccharification of sugarcane bagasse by dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling. Bioresour Technol 105:95–99

    Article  CAS  Google Scholar 

  • Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363(3):769–776

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Narron RH, Kim H, H-m C, Jameel H, Park S (2016) Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol 38:39–46

    Article  CAS  Google Scholar 

  • Ndukwe JK, Aliyu GO, Onwosi CO, Chukwu KO, Ezugworie FN (2020) Mechanisms of weak acid-induced stress tolerance in yeasts: Prospects for improved bioethanol production from lignocellulosic biomass. Process Biochem 90:118–130

    Article  CAS  Google Scholar 

  • Nguyen DTT, Praveen P, Loh K-C (2018) Zymomonas mobilis immobilization in polymeric membranes for improved resistance to lignocellulose-derived inhibitors in bioethanol fermentation. Biochem Eng J 140:29–37

    Article  CAS  Google Scholar 

  • Nichols NN, Dien BS, Guisado GM, López MJ (eds) (2005) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa

    Google Scholar 

  • Nichols NN, Sharma LN, Mowery RA, Chambliss CK, Van Walsum GP, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb Technol 42(7):624–630

    Article  CAS  Google Scholar 

  • Nichols NN, Dien BS, Cotta MA (2010) Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors. Bioresour Technol 101(19):7545–7550

    Article  CAS  Google Scholar 

  • Nigam J (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87(1):17–27

    Article  CAS  Google Scholar 

  • Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. ChemSusChem 6(1):110–122

    Article  CAS  Google Scholar 

  • Oshoma CE, Greetham D, Louis EJ, Smart KA, Phister TG, Powell C, Du C (2015) Screening of non-Saccharomyces cerevisiae strains for tolerance to formic acid in bioethanol fermentation. PLoS One 10:8

    Article  CAS  Google Scholar 

  • Palma M, Guerreiro JF, Sá-Correia I (2018) Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Front Microbiol 9:274

    Article  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (eds) (2005) Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, Totowa

    Google Scholar 

  • Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94(5):851–861

    Article  CAS  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production. Crit Rev Biotechnol 31(1):20–31

    Article  CAS  Google Scholar 

  • Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8):5258–5272

    Article  CAS  Google Scholar 

  • Pérez J, Munoz-Dorado J, De la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  CAS  Google Scholar 

  • Qi B, Chen X, Shen F, Su Y, Wan Y (2009) Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Industr Eng Chem Res 48(15):7346–7353

    Article  CAS  Google Scholar 

  • Qin L, Li W-C, Liu L, Zhu J-Q, Li X, Li B-Z, Yuan Y-J (2016) Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnol Biofuels 9(1):1–10

    Article  CAS  Google Scholar 

  • Ranoux A, Djanashvili K, Arends IW, Hanefeld U (2013) 5-Hydroxymethylfurfural synthesis from hexoses is autocatalytic. ACS Catalysis 3(4):760–763

    Article  CAS  Google Scholar 

  • Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57

    Article  CAS  Google Scholar 

  • Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102

    Article  CAS  Google Scholar 

  • Roberto I, Lacis L, Barbosa M, De Mancilha I (1991) Utilization of sugar cane bagasse hemicellulosic hydrolysate by Pichia stipitis for the production of ethanol. Process Biochem 26(1):15–21

    Article  CAS  Google Scholar 

  • Sarawan C, Suinyuy T, Sewsynker-Sukai Y, Kana EG (2019) Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Bioresour Technol 286:121403

    Article  CAS  Google Scholar 

  • Saritha M, Arora A (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52(2):122–130

    Article  CAS  Google Scholar 

  • Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr Opin Green Sustain Chem 2:48–53

    Article  Google Scholar 

  • Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment–A review. Renew Sustain Energy Rev 54:217–234

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Janu KU, Sukumaran RK, Pandey A (2012) Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J Microbiol Biotechnol 28(2):473–483

    Article  CAS  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, Xu K, Kim S-H, Kim D-H (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sustain Energy Rev 77:28–42

    Article  CAS  Google Scholar 

  • Soccol CR, Faraco V, Karp SG, Vandenberghe LP, Thomaz-Soccol V, Woiciechowski AL, Pandey A (2019) Lignocellulosic bioethanol: current status and future perspectives. In: Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Academic Press, San Diego, pp 331–354

    Chapter  Google Scholar 

  • Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-a review. Biomass Convers Biorefin 7(2):247–274

    Article  CAS  Google Scholar 

  • Sukwong P, Sunwoo IY, Lee MJ, Ra CH, Jeong G-T, Kim S-K (2019) Application of the severity factor and HMF removal of red macroalgae Gracilaria verrucosa to production of bioethanol by Pichia stipitis and Kluyveromyces marxianus with adaptive evolution. Appl Biochem Biotechnol 187(4):1312–1327

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  • Sun S-N, Cao X-F, Zhang X-M, Xu F, Sun R-C, Jones GL (2014a) Characteristics and enzymatic hydrolysis of cellulose-rich fractions from steam exploded and sequentially alkali delignified bamboo (Phyllostachys pubescens). Bioresour Technol 163:377–380

    Article  CAS  Google Scholar 

  • Sun S, Cao X, Sun S, Xu F, Song X, Sun R-C, Jones GL (2014b) Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol Biofuels 7(1):116

    Google Scholar 

  • Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (1999) Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. J Biosci Bioeng 87(2):169–174

    Article  CAS  Google Scholar 

  • Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenergy 81:9–18

    Article  CAS  Google Scholar 

  • Tran TTA, Le TKP, Mai TP, Nguyen DQ (2019) Bioethanol production from lignocellulosic biomass. In: Alcohol fuels-current technologies and future prospect. IntechOpen, Rijeka

    Google Scholar 

  • Tu W-C, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 20:11–17

    Article  Google Scholar 

  • Uppugundla N, da Costa SL, Chundawat SP, Yu X, Simmons B, Singh S, Gao X, Kumar R, Wyman CE, Dale BE (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol Biofuels 7(1):72

    Article  CAS  Google Scholar 

  • van der Pol EC, Bakker RR, Baets P, Eggink G (2014) By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio) chemicals and fuels. Appl Microbiol Biotechnol 98(23):9579–9593

    Article  CAS  Google Scholar 

  • Varga E, Réczey K, Zacchi G (2004) Proceedings of the twenty-fifth symposium on biotechnology for fuels and chemicals, Breckenridge, CO

    Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2(1):573–584

    Article  CAS  Google Scholar 

  • Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam K, Ingram LO (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci 110(10):4021–4026

    Article  CAS  Google Scholar 

  • Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol 258:302–309

    Article  CAS  Google Scholar 

  • Wang W-t, Dai L-c WB, B-f Q, T-f H, Hu G-q, He M-x (2020) Biochar-mediated enhanced ethanol fermentation (BMEEF) in Zymomonas mobilis under furfural and acetic acid stress. Biotechnol Biofuels 13(1):1–10

    Article  CAS  Google Scholar 

  • Watanabe K, Tachibana S, Konishi M (2019) Modeling growth and fermentation inhibition during bioethanol production using component profiles obtained by performing comprehensive targeted and non-targeted analyses. Bioresour Technol 281:260–268

    Article  CAS  Google Scholar 

  • Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR (2002) Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Industr Eng Chem Res 41(24):6132–6138

    Article  CAS  Google Scholar 

  • Wikandari R, Sanjaya AP, Millati R, Karimi K, Taherzadeh MJ (2019) Fermentation inhibitors in ethanol and biogas processes and strategies to counteract their effects. In: Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Elsevier, Amsterdam, pp 461–499

    Chapter  Google Scholar 

  • Wimalasena TT, Greetham D, Marvin ME, Liti G, Chandelia Y, Hart A, Louis EJ, Phister TG, Tucker GA, Smart KA (2014) Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microb Cell Fact 13(1):47

    Article  CAS  Google Scholar 

  • Xiao X, Bian J, Li M-F, Xu H, Xiao B, Sun R-C (2014) Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour Technol 159:41–47

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Innov Sustain Econ 2(1):26–40

    CAS  Google Scholar 

  • Yang Y, Hu M, Tang Y, Geng B, Qiu M, He Q, Chen S, Wang X, Yang S (2018) Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. Bioresour Bioprocess 5(1):6

    Article  Google Scholar 

  • Yang H, Shi Z, Xu G, Qin Y, Deng J, Yang J (2019) Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour Technol 274:261–266

    Article  CAS  Google Scholar 

  • Yee KL, Jansen LE, Lajoie CA, Penner MH, Morse L, Kelly CJ (2018) Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase. Enzyme Microb Technol 108:59–65

    Article  CAS  Google Scholar 

  • Yu J, Zhang J, He J, Liu Z, Yu Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100(2):903–908

    Article  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100(9):2580–2587

    Article  CAS  Google Scholar 

  • Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, Smilde AK, Punt PJ (2014) Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol 14(1):22

    Article  CAS  Google Scholar 

  • Zhang J, Adrián FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F (2010) Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463(7280):501–506

    Article  CAS  Google Scholar 

  • Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33

    Article  CAS  Google Scholar 

  • Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009a) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139(1):47–54

    Article  CAS  Google Scholar 

  • Zhao X, Cheng K, Liu D (2009b) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82(5):815

    Article  CAS  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Progr Energy Combust Sci 42:35–53

    Article  Google Scholar 

  • Zhou X, Ma J, Ji Z, Zhang X, Ramaswamy S, Xu F, R-c S (2014) Dilute acid pretreatment differentially affects the compositional and architectural features of Pinus bungeana Zucc. compression and opposite wood tracheid walls. Ind Crop Prod 62:196–203

    Article  CAS  Google Scholar 

  • Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kausar, F., Irfan, M., Shakir, H.A., Khan, M., Ali, S., Franco, M. (2021). Challenges in Bioethanol Production: Effect of Inhibitory Compounds. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Basic and Advanced Concepts. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4611-6_5

Download citation

Publish with us

Policies and ethics