Skip to main content

Advertisement

Log in

Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ionic liquid (IL) pretreatment of lignocellulose materials is a promising process in biomass conversion to renewable biofuel. More in-depth research involving environment-friendly IL is much needed to explore pretreatment green route. In our case, IL 1-methyl-3-methylimidazolium dimethylphosphite ([Mmim]DMP) was chosen as an environment-friendly solvent to pretreat corn cob in view of its biocompatibility with both lignocellulose solubility and cellulase activity. The pretreatment/saccharification process and in situ saccharification process involving [Mmim]DMP were efficiently performed in bioconversion of corn cob to sugars, and more than 70% saccharification rates were obtained. Furthermore, the fermentability of reducing sugars obtained from the hydrolyzates was evaluated using Rhodococcus opacus strain ACCC41043 (R. opacus). High lipid production 41–43% of cell dry matter was obtained after 30 h of cultivation. GC/MS analysis indicated that lipids from R. opacus contained mainly long-chain fatty acids with four major constituent/oleic acid, stearic acid, palmitic acid, palmitoleic acid which are good candidates for biodiesel. These elucidated that corn cob pretreated by IL [Mmim]DMP did not bring negative effects on saccharification, cell growth, and accumulation of lipid of R. opacus. In conclusion, the IL [Mmim]DMP shows promise as green pretreatment solvent for cellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. FeW Lipid 99:239–246

    Article  CAS  Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Adv Biochem Eng Biotechnol 108:67–93

    CAS  Google Scholar 

  • Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910

    Article  CAS  Google Scholar 

  • Diego AF, Richard CR, Richard PS, Patrick M, Guillermo M, Robin DR (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    Article  Google Scholar 

  • Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:85–189

    Article  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    CAS  Google Scholar 

  • Goering HK, Van Soest P (1970) Forage fibre analysis. Apparatus, reagents, procedure and some applications. Agric Handbook 379, Washington DC, pp 1–20, ARS. USDA

    Google Scholar 

  • Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  Google Scholar 

  • Hélène OB, Lionel M (2002) Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A Chem 182–183:419–437

    Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  • Hurtubise FG, Kräsig H (1960) Classification of fine structural characteristics in cellulose by infrared spectroscopy. Use of potassium bromide pellet technique. Anal Chem 32:177–181

    Article  CAS  Google Scholar 

  • Kamiya N, Matsushita Y, Hanaki M, Nakashima K, Narita M, Goto M, Takahashi H (2008) Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnol Lett 30:1037–1040

    Article  CAS  Google Scholar 

  • Li Q, He YC, Xian M, Jun G, Xu X, Jian MY, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575

    Article  CAS  Google Scholar 

  • Li YH, Zhao ZB, Bai FW (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–331

    Article  Google Scholar 

  • Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [Bmim]Cl. Chin Sci Bull 51:2432–2436

    Article  CAS  Google Scholar 

  • Long ZD, Xu JH, Pan J (2007) Immobilization of Serratia marcescens lipase and catalytic resolution of trans-3-(4’-methoxyphenyl)glycidic acid methyl ester. Chin J Catal 28:175–179

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mikkola JP, Kirilin A, Tuuf JC, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9:1229–1237

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:73–686

    Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Nie Y, Li C, Sun A, Meng H, Wang Z (2006) Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids. Energ Fuels 20:2083–2087

    Article  CAS  Google Scholar 

  • O’Connor RT, DuPré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons. Part I: physical and crystalline modifications and oxidation. Tex Res J 28:382–392

    Article  Google Scholar 

  • Peterson A, Thomsen MH, Nielsen HH, Thomsen AB (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819

    Article  Google Scholar 

  • Rayne S, Mazza G (2007) Trichoderma reesei derived cellulase activity in three N,N-dimethylethanolammonium akylcarboxylate ionic liquids. Nat Precedings p 1–17 (http://hdl.nature.com/10101/npre.2007.632.1)

  • Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792–793

    Article  Google Scholar 

  • Roosen C, Müller P, Greiner L (2008) Ionic liquids in biotechnology: applications and perspectives for biotransformations. Appl Microbiol Biotechnol 81:607–614

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 45:841–845

    Article  Google Scholar 

  • Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222

    Article  CAS  Google Scholar 

  • Schmid A, Kollmer A, Mathys RG, Withot B (1998) Development toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles 2:249–256

    Article  CAS  Google Scholar 

  • Steinbüchel IVA (2001) High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol 55:547–555

    Article  Google Scholar 

  • Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5:443–447

    Article  CAS  Google Scholar 

  • Wackett LP (2008) Biomass to fuels via microbial transformations. Curr Opin Chem Biol 12:187–193

    Article  CAS  Google Scholar 

  • Wältermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbüchel A (2000) Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiol 146:1143–1149

    Google Scholar 

  • Xian M, Li LZ, He YC, Tan WQ, Li Q, Yang F (2009) In situ enzymatic hydrolysis of cellulose and the recovery method for ionic liquid and glucose. Chinese Patent, Application No. 200910093300.8

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioproducts Bioref 2:26–40

    Article  CAS  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

  • Zhang L, Ji J, Deng D, Shu Z, Chen X (2008) Preparation of one kind of acetate based ionic liquid. Chinese Patent, CN, 101108827A

    Google Scholar 

  • Zhang L, Xian M, He YC, Li LZ, Yang JM, Yu ST, Xu X (2009) A Brønsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresour Technol 100:4368–4373

    Article  CAS  Google Scholar 

  • Zhao H, Lee J, Song ZY, Olarongbe O (2006) Enhancing protease enantioselectivity by ionic liquids based on chiral- or ω-amino acids. Tetrahedron Asymmetry 17:1549–1553

    Article  CAS  Google Scholar 

  • Zhao H, Gary AB, Zhi YS, Olarongbe O, Tanisha C, Darkey SP (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  • Zhao H, Cecil LJ, Gary AB, Shu QX, Olarongbe O, Vernecia NP (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotech 139:47–54

    Article  CAS  Google Scholar 

  • Zhao DB, Liao YC, Zhang ZD (2007) Toxicity of Ionic Liquids. CLEAN Soil Air Water 35:42–48

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by CAS 100 Talents Program (KGCX2-YW-801). We are grateful to Dr. Ling Hua and Bo Li for their kindly donation of cellulase (Genencor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mo Xian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

FTIR spectra of untreated corn cob (a) and [Mmim]DMP-treated corn cob (b). Corn cob sample was prepared at 3% (w/w) of [Mmim]DMP concentration and at 130°C for 20 min (DOC 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Jiang, X., He, Y. et al. Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl Microbiol Biotechnol 87, 117–126 (2010). https://doi.org/10.1007/s00253-010-2484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2484-8

Keywords

Navigation